Ardusub源码剖析——control_althold.cpp
代码
#include "Sub.h"/** control_althold.pde - init and run calls for althold, flight mode*/// althold_init - initialise althold controller
bool Sub::althold_init()
{if(!control_check_barometer()) {return false;}// initialize vertical maximum speeds and acceleration// sets the maximum speed up and down returned by position controllerpos_control.set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);pos_control.set_correction_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);// initialise position and desired velocitypos_control.init_z_controller();last_pilot_heading = ahrs.yaw_sensor;return true;
}// althold_run - runs the althold controller
// should be called at 100hz or more
void Sub::althold_run()
{uint32_t tnow = AP_HAL::millis();// initialize vertical speeds and accelerationpos_control.set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);if (!motors.armed()) {motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);// Sub vehicles do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle)attitude_control.set_throttle_out(0,true,g.throttle_filt);attitude_control.relax_attitude_controllers();pos_control.relax_z_controller(motors.get_throttle_hover());last_pilot_heading = ahrs.yaw_sensor;return;}motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);// get pilot desired lean anglesfloat target_roll, target_pitch;// Check if set_attitude_target_no_gps is validif (tnow - sub.set_attitude_target_no_gps.last_message_ms < 5000) {float target_yaw;Quaternion(set_attitude_target_no_gps.packet.q).to_euler(target_roll,target_pitch,target_yaw);target_roll = degrees(target_roll);target_pitch = degrees(target_pitch);target_yaw = degrees(target_yaw);attitude_control.input_euler_angle_roll_pitch_yaw(target_roll * 1e2f, target_pitch * 1e2f, target_yaw * 1e2f, true);return;}get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());// get pilot's desired yaw ratefloat target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());// call attitude controllerif (!is_zero(target_yaw_rate)) { // call attitude controller with rate yaw determined by pilot inputattitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);last_pilot_heading = ahrs.yaw_sensor;last_pilot_yaw_input_ms = tnow; // time when pilot last changed heading} else { // hold current heading// this check is required to prevent bounce back after very fast yaw maneuvers// the inertia of the vehicle causes the heading to move slightly past the point when pilot input actually stoppedif (tnow < last_pilot_yaw_input_ms + 250) { // give 250ms to slow down, then set target headingtarget_yaw_rate = 0; // Stop rotation on yaw axis// call attitude controller with target yaw rate = 0 to decelerate on yaw axisattitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);last_pilot_heading = ahrs.yaw_sensor; // update heading to hold} else { // call attitude controller holding absolute absolute bearingattitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, last_pilot_heading, true);}}control_depth();motors.set_forward(channel_forward->norm_input());motors.set_lateral(channel_lateral->norm_input());
}void Sub::control_depth() {// Hold actual position until zero derivative is detectedstatic bool engageStopZ = true;// Get last user velocity direction to check for zero derivative pointsstatic bool lastVelocityZWasNegative = false;if (fabsf(channel_throttle->norm_input()-0.5f) > 0.05f) { // Throttle input above 5%// output pilot's throttleattitude_control.set_throttle_out(channel_throttle->norm_input(), false, g.throttle_filt);// reset z targets to current valuespos_control.relax_z_controller(channel_throttle->norm_input());engageStopZ = true;lastVelocityZWasNegative = is_negative(inertial_nav.get_velocity_z());} else { // hold zif (ap.at_bottom) {pos_control.init_z_controller();pos_control.set_pos_target_z_cm(inertial_nav.get_altitude() + 10.0f); // set target to 10 cm above bottom}// Detects a zero derivative// When detected, move the altitude set point to the actual position// This will avoid any problem related to joystick delays// or smaller input signalsif(engageStopZ && (lastVelocityZWasNegative ^ is_negative(inertial_nav.get_velocity_z()))) {engageStopZ = false;pos_control.init_z_controller();}pos_control.update_z_controller();}
}
剖析
Sub::althold_init()
#include "Sub.h"
包含 Sub 类的定义,以便在这个源文件中使用 Sub 类及其成员。
// althold_init - initialise althold controller
bool Sub::althold_init()
{
这是 althold_init 函数的声明。它不接受任何参数,返回一个布尔值,表示初始化是否成功。
if(!control_check_barometer()) {return false;}
这行代码检查气压计是否正常工作。control_check_barometer 用于验证气压计的读数是否有效。如果气压计检查失败,则初始化过程无法继续,函数返回 false。
// initialize vertical maximum speeds and acceleration// sets the maximum speed up and down returned by position controllerpos_control.set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);pos_control.set_correction_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
这些行设置了垂直方向上的最大速度和加速度。它们定义了位置控制器可以返回的最大上升和下降速度,以及用于纠正位置的速度和加速度。
pos_control.set_max_speed_accel_z(): 设置最大速度和加速度。get_pilot_speed_dn(): 获取飞行员设定的下降速度。g.pilot_speed_up: 飞行员设定的上升速度。g.pilot_accel_z: 飞行员设定的垂直加速度。
// initialise position and desired velocitypos_control.init_z_controller();
初始化垂直位置控制器,设置当前位置和期望的速度。这确保了潜水器在进入高度保持模式时能够从当前状态平滑过渡。
last_pilot_heading = ahrs.yaw_sensor;
记录当前的航向(yaw)作为最后飞行员指定的航向。ahrs 是一个姿态和航向参考系统(Attitude and Heading Reference System)对象,yaw_sensor 是其航向传感器的读数。
return true;
如果所有的初始化步骤都成功完成,则返回 true。
Sub::althold_run()
// althold_run - runs the althold controller
// should be called at 100hz or more
void Sub::althold_run()
{
这是 althold_run 函数的声明和注释。注释说明了这个函数的作用是运行高度保持控制器,并且建议该函数应该以至少100Hz的频率被调用。
uint32_t tnow = AP_HAL::millis();
获取当前系统时间(以毫秒为单位)。tnow 变量存储当前时间
// initialize vertical speeds and accelerationpos_control.set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
设置垂直方向上的最大速度和加速度。这些值决定了潜水器在垂直方向上响应指令的速度和加速度。
get_pilot_speed_dn(): 获取飞行员设定的下降速度。g.pilot_speed_up: 全局变量,代表飞行员设定的上升速度。g.pilot_accel_z: 全局变量,代表飞行员设定的垂直加速度。
if (!motors.armed()) {motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
如果电机未启动(armed),则将电机设置为地面空闲状态。
// Sub vehicles do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle)attitude_control.set_throttle_out(0,true,g.throttle_filt);attitude_control.relax_attitude_controllers();pos_control.relax_z_controller(motors.get_throttle_hover());
如果潜水器未启动,它不会稳定横滚(roll)、俯仰(pitch)和偏航(yaw)。因此,以下操作会被执行:
- 设置油门输出为0,并应用滤波器。
- 放松姿态控制器,以防止不必要的控制动作。
- 放松垂直位置控制器,并将其设置到悬停油门值。
last_pilot_heading = ahrs.yaw_sensor;
记录当前的航向作为最后飞行员指定的航向。
return;}
如果电机未启动,则退出函数。
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
如果电机已启动,则设置电机为油门无限制状态,这意味着潜水器可以根据控制输入全速运行。
// get pilot desired lean angles
float target_roll, target_pitch;
声明两个浮点变量 target_roll 和 target_pitch,用于存储飞行员期望的横滚和俯仰角度。
// Check if set_attitude_target_no_gps is valid
if (tnow - sub.set_attitude_target_no_gps.last_message_ms < 5000) {
检查 set_attitude_target_no_gps 消息是否在最近5秒内收到。set_attitude_target_no_gps 是一个结构体,包含一个四元数(quaternion)用于表示姿态和一个时间戳(last_message_ms)。如果该消息是有效的(即在5秒之内收到的),则执行以下代码块。
float target_yaw;Quaternion(set_attitude_target_no_gps.packet.q).to_euler(target_roll,target_pitch,target_yaw);
使用 Quaternion 类将收到的四元数转换为欧拉角(Euler angles),即横滚(roll)、俯仰(pitch)和偏航(yaw)角度。这些角度存储在 target_roll、target_pitch 和 target_yaw 变量中。
target_roll = degrees(target_roll);target_pitch = degrees(target_pitch);target_yaw = degrees(target_yaw);
将欧拉角从弧度转换为度。degrees() 函数是用来执行这个转换的。
attitude_control.input_euler_angle_roll_pitch_yaw(target_roll * 1e2f, target_pitch * 1e2f, target_yaw * 1e2f, true);return;
将转换后的角度(乘以100,转换成期望的单位)输入到姿态控制器中,并立即返回,结束 althold_run 函数的执行。true 参数表示这是一个直接设置姿态的请求,而不是一个增量变化。
get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());
如果 set_attitude_target_no_gps 消息不是在最近5秒内收到的,则调用 get_pilot_desired_lean_angles 函数来获取飞行员的期望倾斜角度。这个函数基于遥控器的输入来计算期望的横滚和俯仰角度。
channel_roll->get_control_in(): 获取遥控器横滚通道的输入值。channel_pitch->get_control_in(): 获取遥控器俯仰通道的输入值。attitude_control.get_althold_lean_angle_max(): 获取高度保持模式下的最大倾斜角度。
// get pilot's desired yaw rate
float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
获取飞行员期望的偏航速率(围绕垂直轴的旋转速率)。get_pilot_desired_yaw_rate 函数接收来自遥控器偏航通道的输入值,并返回期望的偏航速率。
// call attitude controller
if (!is_zero(target_yaw_rate)) { // call attitude controller with rate yaw determined by pilot inputattitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);last_pilot_heading = ahrs.yaw_sensor;last_pilot_yaw_input_ms = tnow; // time when pilot last changed heading
如果期望的偏航速率不为零(即飞行员正在请求改变朝向),则调用姿态控制器,使用飞行员指定的横滚、俯仰和偏航速率。同时记录当前航向作为最后飞行员指定的航向,并更新最后飞行员偏航输入的时间戳。
} else { // hold current heading
如果期望的偏航速率为零(即飞行员没有请求改变朝向),则尝试保持当前的朝向。
// this check is required to prevent bounce back after very fast yaw maneuvers// the inertia of the vehicle causes the heading to move slightly past the point when pilot input actually stoppedif (tnow < last_pilot_yaw_input_ms + 250) { // give 250ms to slow down, then set target headingtarget_yaw_rate = 0; // Stop rotation on yaw axis// call attitude controller with target yaw rate = 0 to decelerate on yaw axisattitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);last_pilot_heading = ahrs.yaw_sensor; // update heading to hold
如果自上次飞行员请求偏航以来不到250毫秒,则设置偏航速率为零以停止偏航轴的旋转,并调用姿态控制器来减速偏航轴。同时更新最后飞行员指定的航向。
} else { // call attitude controller holding absolute headingattitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, last_pilot_heading, true);}
如果自上次飞行员请求偏航以来已经超过250毫秒,则调用姿态控制器以保持绝对航向(即最后飞行员指定的航向)。
control_depth();
调用 control_depth 函数来控制潜水器的深度
motors.set_forward(channel_forward->norm_input());
motors.set_lateral(channel_lateral->norm_input());
设置潜水器的前进和侧向动力。channel_forward->norm_input() 和 channel_lateral->norm_input() 分别获取飞行员指定的前进和侧向通道的标准化输入值,并使用这些值来设置电机的推力方向。
Sub::control_depth()
void Sub::control_depth() {
定义 Sub 类的成员函数 control_depth,没有返回值。
// Hold actual position until zero derivative is detectedstatic bool engageStopZ = true;
声明一个静态布尔变量 engageStopZ,用于确定是否激活深度保持。当检测到速度的零导数时,它将保持实际位置。
// Get last user velocity direction to check for zero derivative pointsstatic bool lastVelocityZWasNegative = false;
声明一个静态布尔变量 lastVelocityZWasNegative,用于记录用户上一次的垂直速度方向(正或负),以检测速度的零导数点。
if (fabsf(channel_throttle->norm_input()-0.5f) > 0.05f) { // Throttle input above 5%
检查遥控器油门通道的标准化输入是否大于5%(即飞行员是否在请求垂直移动)。norm_input() 返回一个介于0和1之间的值,其中0.5代表中立位置。如果输入与0.5的差值的绝对值大于0.05,表示油门输入超过了5%。
// output pilot's throttleattitude_control.set_throttle_out(channel_throttle->norm_input(), false, g.throttle_filt);
如果飞行员请求垂直移动,则将飞行员的油门输入输出到姿态控制器。set_throttle_out 函数用于设置油门输出,g.throttle_filt 是一个滤波参数。
// reset z targets to current valuespos_control.relax_z_controller(channel_throttle->norm_input());
重置Z轴的目标位置到当前值,这是为了在新的油门输入下重新开始深度控制。
engageStopZ = true;lastVelocityZWasNegative = is_negative(inertial_nav.get_velocity_z());} else { // hold z
如果油门输入低于5%,则进入保持深度的模式。同时更新 engageStopZ 和 lastVelocityZWasNegative 变量。
if (ap.at_bottom) {pos_control.init_z_controller();pos_control.set_pos_target_z_cm(inertial_nav.get_altitude() + 10.0f); // set target to 10 cm above bottom}
如果潜水器到达了底部,初始化Z轴控制器,并将目标深度设置为当前高度加上10厘米,以保持潜水器在底部上方10厘米的位置。
// Detects a zero derivative// When detected, move the altitude set point to the actual position// This will avoid any problem related to joystick delays// or smaller input signalsif(engageStopZ && (lastVelocityZWasNegative ^ is_negative(inertial_nav.get_velocity_z()))) {engageStopZ = false;pos_control.init_z_controller();}
检测速度的零导数。如果检测到(即速度从正变为负或从负变为正),则将 engageStopZ 设置为 false 并重新初始化Z轴控制器,将目标深度设置为当前深度。
pos_control.update_z_controller();}
无论是否检测到零导数,都会更新Z轴控制器,以维持或改变潜水器的深度。
相关文章:
Ardusub源码剖析——control_althold.cpp
代码 #include "Sub.h"/** control_althold.pde - init and run calls for althold, flight mode*/// althold_init - initialise althold controller bool Sub::althold_init() {if(!control_check_barometer()) {return false;}// initialize vertical maximum sp…...
Vue前端开发-路由的基本配置
在传统的 Web 页面开发过程中,可以借助超级链接标签实现站内多个页面间的相互跳转,而在现代的工程化、模块化下开发的Web页面只有一个,在一个页面中需要实现站内各功能页面渲染,相互跳转,这时些功能的实现,…...
HarmonyOS JSON解析与生成 常用的几个方法
HarmonyOS 使用 JSON解析与生成 的好处 一、轻量级与高效性 易于阅读和编写:JSON格式的数据易于人类阅读和编写,降低了数据处理的复杂性。高效解析与生成:HarmonyOS的JSON解析库提供了一系列高效的函数和类,能够快速地将JSON字符串…...
Docker 进阶指南:常用命令、最佳实践与资源管理
Docker 进阶指南:常用命令、最佳实践与资源管理 Docker 作为一种轻量级的容器化技术,已经成为现代软件开发和部署不可或缺的工具。本文将为您深入介绍 Docker 的常用命令、最佳实践以及如何有效管理容器资源,帮助您更好地在 Ubuntu 22.04 或…...
【前端】特殊案例分析深入理解 JavaScript 中的词法作用域
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 💯前言💯案例代码💯词法作用域(Lexical Scope)与静态作用域什么是词法作用域?代码执行的详细分析 💯函数定义与调用的…...
Jmeter进阶篇(29)AI+性能测试领域场景落地
🏝️关于我:我是綦枫。一个顺手写写代码的音乐制作人。 前言 随着2022年GPT3.5的问世,我们的社会已经进入了AI时代,这是一个全新的风口,也会迎来全新的挑战和机遇。如果能抓住新时代的风口,你将会在进步的路上越走越快。今天让我们来一起探究一下,在软件性能测试领域,…...
理解和应用 Python Requests 库中的 .json() 方法:详细解析与示例
理解和应用 Python Requests 库中的 .json() 方法:详细解析与示例 在使用 Python 的 requests 库进行网络请求时,.json() 方法是一种非常实用的功能,用于将从 API 获取的 JSON 格式的字符串响应转换为 Python 可操作的字典或列表。这一功能的…...
docker 运行my-redis命令
CREATE TABLE orders ( order_id bigint NOT NULL COMMENT "订单ID", dt date NOT NULL COMMENT "日期", merchant_id int NOT NULL COMMENT "商家ID", user_id int NOT NULL COMMENT "用户ID", good_id int NOT NULL COMMENT "商…...
cloudstack概要及单节点安装部署
概要 Apache CloudStack 是一个开源的云计算管理平台,用于管理和部署大规模的虚拟化环境,支持 IaaS(基础设施即服务)模型。它广泛应用于私有云、公共云和混合云场景。 核心功能 多租户支持 提供隔离的虚拟网络、计算资源和存储资…...
Android Gradle 相关
JDK环境配置: 1、Gradle运行时的JDK,即Gradle需要用到的JDK,配置如下: 如需修改现有项目的 Gradle JDK 配置,请依次点击 File(或者 macOS 上的 Android Studio)> Settings > Build, Exe…...
SpringMVC:入门案例
从此开始,我们步入SpringMVC的学习。 SpringMVC是一种基于Java实现MVC模型的轻量级Web框架 先来看一下web程序是如何工作的: 因为是异步调用,所以后端不需要返回view视图,将其去除前端如果通过异步调用的方式进行交互࿰…...
LuaForWindows_v5.1.5-52.exe
Releases rjpcomputing/luaforwindows GitHub #lua C:\Users\Administrator\Desktop\test.lua print("Hello lua!") print("ZengWenFeng 13805029595")...
密码学实验工具--Cryptool2
一、 Cryptool2的下载与安装 请参考我的另一篇笔记 二、 Caesar密码 2.1 Caesar密码加解密 1. 在Starcenter中直接搜索caesar的模板。 2. 打开caesar Cipher的模板后,工作区上面已经有了输入框,密钥框,输出框 输入框:要加密…...
量化交易系统开发-实时行情自动化交易-8.1.TradingView平台
19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。 接下来会对于TradingView平台介绍。 T…...
Vue2 常见知识点(二)
使用简单的代码逻辑,理一理实现逻辑 为了方便理解,案例中,没有使用虚拟dom和抽象语法树,是通过直接操作dom来实现的 1.模板语法 先看一个简单的实现: this.compile( this.$el ); 执行模板编译,如果是文本…...
SAP-ABAP开发-第二代增强示例
CUSTOMER EXIT 以VA01为例 目录 一、查找出口 二、出口对象 三、销售订单的增强 一、查找出口 ①查找事务代码的主程序 ②搜索CALL CUSTOMER-FUNCTION SE37下查看函数 函数名称命名规则:EXIT_<程序名>_<序号> ③使用函数查找:MODX_FU…...
UDP 协议与端口绑定行为解析:理解 IP 地址和端口的绑定规则
UDP 协议与端口绑定行为解析:理解 IP 地址和端口的绑定规则 1. UDP 协议与端口绑定基础2. UDP 端口绑定行为与示例3. 关键结论:占有权与消息接收权4. 异常现象:多个程序绑定 0.0.0.0:80805. 端口共享与操作系统的行为差异6. 实践建议与最佳实践7. 总结在网络通信中,UDP(用…...
【Vue3】【Naive UI】<n-message>标签
【Vue3】【Naive UI】标签 content (String | VNode) 【VUE3】【Naive UI】<NCard> 标签 【VUE3】【Naive UI】<n-button> 标签 【VUE3】【Naive UI】<a> 标签 【VUE3】【Naive UI】<NDropdown&…...
C++ 变量和常量:开启程序构建之门的关键锁钥与永恒灯塔
目录 一、变量 1.1 变量的创建 1.2 变量的初始化 1.3 变量的分类 1.4 变量的初始化 二、常量 2.1 字面常量 2.2 #define定义常量 2.3 const 定义常量 一、变量 1.1 变量的创建 data_type name; | | | | 数据类型 变量名 ------------- int age; //整型变量 char ch; …...
Linux部分实用操作
目录 1、快捷键 2、软件安装 3、systemctl 4、ln命令创建软连接 5、IP地址 6、主机名 7、域名解析 8、网络传输 ping wget curl命令 9、端口 10、进程 11、主机状态 查看系统资源占用--top 磁盘信息监控--df--iostat 网络状态监控--sar -n DEV 12、环境…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
