量化交易系统开发-实时行情自动化交易-8.7.文华平台
19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。
接下来会对于文华平台介绍。
文华财经量化交易服务平台(Wenhua Financial)是一款广受国内量化交易者和机构用户欢迎的交易工具。文华财经的量化平台集策略开发、实时行情、自动化交易、策略优化、回测模拟于一体,为用户提供了全面的量化交易解决方案。文华量化平台具备友好的用户界面、强大的行情分析工具,以及对多市场和多品种的兼容性,使其在国内期货和金融交易市场中占据重要地位。文华量化平台不仅适合初学者学习和使用,也能够满足专业交易员和机构对交易策略开发和执行的高要求。
1. 实例背景:基于MACD的趋势跟随策略
策略逻辑
MACD(移动平均线收敛发散)是期货市场中常用的趋势跟随指标。本策略基于MACD指标进行交易决策:
- 当MACD线由下向上穿过信号线(DIF > DEA)时,生成买入信号。
- 当MACD线由上向下穿过信号线(DIF < DEA)时,生成卖出信号。
适用市场
此策略适用于趋势性较强的期货品种,如沪铜(CU)、螺纹钢(RB)等。
2. 数据准备与环境配置
在文华财经平台上,开发策略需要使用其量化功能模块(如WH6)获取历史行情数据和进行策略回测。
# 导入文华量化库
from WH6Quant.api import *# 初始化数据
symbol = 'RB2301' # 期货合约代码
freq = '1m' # 时间周期,1分钟线
start_date = '2023-01-01'
end_date = '2023-11-01'# 获取历史行情数据
data = get_kline(symbol=symbol, freq=freq, start_date=start_date, end_date=end_date)# 数据格式预览
print(data.head())
数据字段说明:
datetime
:时间戳open
:开盘价high
:最高价low
:最低价close
:收盘价volume
:成交量
3. 策略开发
(1)计算MACD指标
在文华平台中,用户可以直接调用内置指标计算函数,或基于Python库自定义计算逻辑。
# 计算MACD指标
def calculate_macd(data, short=12, long=26, signal=9):"""计算MACD指标"""data['ema_short'] = data['close'].ewm(span=short).mean()data['ema_long'] = data['close'].ewm(span=long).mean()data['DIF'] = data['ema_short'] - data['ema_long']data['DEA'] = data['DIF'].ewm(span=signal).mean()data['MACD'] = (data['DIF'] - data['DEA']) * 2 # 柱状图return data# 应用指标计算
data = calculate_macd(data)
print(data[['datetime', 'close', 'DIF', 'DEA', 'MACD']].tail())
(2)生成交易信号
基于MACD的交叉生成买入和卖出信号。
# 生成交易信号
data['signal'] = 0
data.loc[data['DIF'] > data['DEA'], 'signal'] = 1 # 买入信号
data.loc[data['DIF'] <= data['DEA'], 'signal'] = -1 # 卖出信号
data['position'] = data['signal'].shift(1) # 次周期执行
4. 回测实现
回测用于评估策略在历史数据上的表现,计算收益、回撤等关键指标。
(1)计算策略收益
结合持仓信号和市场价格,计算策略每日收益率和累计净值。
# 策略收益计算
data['daily_return'] = data['close'].pct_change() # 每周期收益率
data['strategy_return'] = data['position'] * data['daily_return'] # 策略收益# 计算累计净值
initial_capital = 100000 # 初始资金
data['strategy_net'] = (1 + data['strategy_return']).cumprod() * initial_capital
data['benchmark_net'] = (1 + data['daily_return']).cumprod() * initial_capital
(2)回测结果分析
输出策略的关键绩效指标(KPI)。
# 关键指标计算
total_return = data['strategy_net'].iloc[-1] / initial_capital - 1
max_drawdown = (data['strategy_net'] / data['strategy_net'].cummax() - 1).min()
annual_return = (1 + total_return) ** (1 / (len(data) / 252)) - 1print(f"策略总收益率: {total_return:.2%}")
print(f"最大回撤: {max_drawdown:.2%}")
print(f"年化收益率: {annual_return:.2%}")
5. 性能可视化
绘制累计净值曲线以直观展示策略表现。
import matplotlib.pyplot as plt# 绘制净值曲线
plt.figure(figsize=(12, 6))
plt.plot(data['datetime'], data['strategy_net'], label='Strategy Net Value', color='blue')
plt.plot(data['datetime'], data['benchmark_net'], label='Benchmark Net Value', color='gray')
plt.title('Strategy vs Benchmark Performance')
plt.xlabel('Date')
plt.ylabel('Net Value')
plt.legend()
plt.show()
6. 参数优化与扩展
参数优化
通过调整MACD参数(短周期、长周期、信号周期),寻找最佳策略参数组合。
# 参数优化
best_params = None
best_performance = -float('inf')for short in range(8, 15):for long in range(20, 30):for signal in range(6, 12):data = calculate_macd(data, short=short, long=long, signal=signal)data['signal'] = 0data.loc[data['DIF'] > data['DEA'], 'signal'] = 1data.loc[data['DIF'] <= data['DEA'], 'signal'] = -1data['position'] = data['signal'].shift(1)data['strategy_return'] = data['position'] * data['daily_return']strategy_net = (1 + data['strategy_return']).cumprod() * initial_capitaltotal_return = strategy_net.iloc[-1] / initial_capital - 1if total_return > best_performance:best_performance = total_returnbest_params = (short, long, signal)print(f"最佳参数: {best_params}, 总收益率: {best_performance:.2%}")
策略扩展
- 多品种交易:在不同的期货品种上验证策略的普适性。
- 组合策略:结合其他指标(如RSI、布林带)增强策略效果。
- 风控优化:加入止损、止盈机制,控制风险。
7. 总结
通过上述实例,我们实现了一个基于MACD的趋势跟随策略:
- 策略开发:利用MACD生成交易信号。
- 回测分析:评估历史表现,验证策略有效性。
- 优化与扩展:通过参数调优提升策略表现。
文华平台的优势在于其强大的行情数据支持与策略实现能力。结合合理的交易逻辑、严谨的回测分析与持续优化,用户可以构建出稳健的量化交易策略,适用于实际期货交易市场。
相关文章:
量化交易系统开发-实时行情自动化交易-8.7.文华平台
19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。 接下来会对于文华平台介绍。 文华财经…...

美畅物联丨如何通过 FFmpeg 解码视频
FFmpeg是一款功能强大、在多媒体处理领域广泛应用的开源工具。它可以处理多种音频和视频格式,包含编码、解码、转码、流媒体处理等众多功能。前两天,我们在《美畅物联丨如何通过FFmpeg排查视频问题》一文中介绍了借助FFmpeg程序来辅助判断视频播放异常的…...

机器学习任务功略
loss如果大,训练资料没有学好,此时有两个可能: 1.model bias太过简单(找不到loss低的function)。 解决办法:增加输入的feacture,设一个更大的model,也可以用deep learning增加弹性…...

Web Worker 和 WebSocket的区别
Web Worker(消息传递机制) 定义:是为了在浏览器中提供多线程支持,允许 JavaScript 在后台线程运行,而不阻塞主线程。它非常适合执行耗时的计算任务或处理大量数据,避免主线程(通常是 UI 线程&a…...

JMeter实时性能压测可视化系统整合
一、相关工具简介: JMeter、Grafana 和 InfluxDB 结合实时地收集、分析和展示性能测试数据,进行更好地理解系统的性能表现,及时发现潜在问题并进行优化。 1,JMeter 实时生成性能数据,并将其发送到 InfluxDB 进行存储。2,InfluxDB 存储的数据。3,通过Grafana的仪表板,用…...

无限加载和懒加载及路由滚动及路由滚动不生效
这里写目录标题 列表无限加载懒加载定制路由滚动使用scrollBehavior不起效不管用的原因使用scrollTo来实现路由滚动elMain && elMain.scrollTo(...) 的作用是: 无限加载和懒加载的区别 列表无限加载 无限加载功能在现代网页和移动应用中广泛应用࿰…...

CSS底层基础:小白速来
1. CSS简介 CSS (Cascading Style Sheets) 是一种用来描述HTML或XML文档样式的语言。它使得开发者能够控制网页的布局和外观,包括字体、颜色、间距等。CSS通过选择器来指定要应用样式的元素,并定义这些元素的具体样式属性。 基本结构示例: …...

【MySQL 进阶之路】索引概述
第06章_索引 1.什么是索引 索引是存储引擎用于快速找到数据记录的一种数据结构,就好比一本教科书的目录部分,通过目录中找到对应文章的页码,便可快速定位到需要的文章。MySQL中也是一样的道理,进行数据查找时,首先查…...

【C++boost::asio网络编程】有关异步读写api的笔记
异步读写api 异步写操作async_write_someasync_send 异步读操作async_read_someasync_receive 定义一个Session类,主要是为了服务端专门为客户端服务创建的管理类 class Session { public:Session(std::shared_ptr<asio::ip::tcp::socket> socket);void Conn…...
Elasticsearch 的存储与查询
Elasticsearch 的存储与查询 在搜索系统领域,数据的存储与查询是两个最基础且至关重要的环节。Elasticsearch(ES) 在这两方面进行了深度优化,使其在关系型数据库或非关系型数据库中脱颖而出,成为搜索系统的首选。 映射 (Mapping) 映射 (Ma…...

008静态路由-特定主机路由
按照如上配置,用192.168.0.1 电脑ping 192.168.1.1 发现能够ping通 用192.168.0.1 电脑ping 192.168.2.1 发现不能ping通 这是因为192.168.0.1 和 192.168.1.1 使用的是同一个路由器R1。 192.168.0.1 和 192.168.2.1 通信需要先经过R1,再经过R2 …...

SystemUI 下拉框 Build 版本信息去掉
需求及场景 去掉SystemUI 下拉框 Build 版本信息 如下图所示:去掉 12 (SP1A.201812.016) 了解 去掉之前我们先了解它是个什么东西:其实就是一个Build RTM 信息显示 Android_12_build_SP1A.210812.016 修改文件 /frameworks/base/packages/Syste…...

【JS】栈内存、堆内存、事件机制区别、深拷贝、浅拷贝
js中,内存主要分为两种类型:栈内存(stack)、堆内存(heap),两种内存区域在存储和管理数据时有各自的特点和用途。 栈内存 访问顺序 栈是先进后出、后进先出的数据结构,栈内存是内存用…...

如何确保Java爬虫获得1688商品详情数据的准确性
在数字化商业时代,数据的价值日益凸显,尤其是对于电商平台而言。1688作为中国领先的B2B电子商务平台,提供了海量的商品数据接口,这些数据对于市场分析、库存管理、价格策略制定等商业活动至关重要。本文将详细介绍如何使用Java编写…...
【蓝牙通讯】iOS蓝牙开发基础介绍
1. iOS 蓝牙开发基础 在 iOS 中,蓝牙的操作主要是通过 Core Bluetooth 框架来实现。理解 Core Bluetooth 的基本组件和工作原理是学习 iOS 蓝牙开发的第一步。 核心知识点: Core Bluetooth 框架:这是 iOS 系统提供的专门用于蓝牙低功耗&am…...

Vue 90 ,Element 13 ,Vue + Element UI 中 el-switch 使用小细节解析,避免入坑(获取后端的数据类型自动转变)
目录 前言 在开发过程中,我们经常遇到一些看似简单的问题,但有时正是这些细节问题让我们头疼不已。今天,我就来和大家分享一个我在开发过程中遇到的 el-switch 使用的小坑,希望大家在使用时能够避免。 一. 问题背景 二. 问题分…...

echarts的双X轴,父级居中的相关配置
前言:折腾了一个星期,在最后一天中午,都快要放弃了,后来坚持下来,才有下面结果。 这个效果就相当是复合表头,第一行是子级,第二行是父级。 子级是奇数个时,父级label居中很简单&…...
RuoYi-Vue部署到Linux服务器(Jar+Nginx)
一、本地环境准备 源码下载、本地Jdk及Node.js环境安装,参考以下文章。 附:RuoYi-Vue下载与运行 二、服务器环境准备 1.安装Jdk 附:JDK8下载安装与配置环境变量(linux) 2.安装MySQL 附:MySQL8免安装版下载安装与配置(linux) 3.安装Redis 附:Redis下载安装与配置(…...
Linux firewalld常用命令
启动防火墙 systemctl start firewalld 停止防火墙 systemctl stop firewalld 防火墙开机自启动 systemctl enable firewalld 禁止防火墙开机自启动 systemctl disable firewalld 检查防火墙的状态 systemctl status firewalld 重新加载防火墙的配置 firewall-cmd -…...
Vue 组件之间的通信方式
Vue.js 中组件之间的通信是构建复杂应用的关键部分。以下是一些常见的Vue组件通信方式: 1. Props 和 Emit(父子组件通信) Props:父组件通过props向子组件传递数据。Emit:子组件通过emit触发事件,向父组件…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...

以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...

计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...

9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...