基于Matlab BP神经网络的非线性系统辨识与控制研究
随着现代工业和科学技术的不断发展,非线性系统的建模和控制成为了自动化领域中的重要研究课题。传统的系统辨识方法往往难以应对系统的复杂性和非线性特性,而人工神经网络(ANN)凭借其强大的逼近能力和自适应性,已广泛应用于系统辨识和控制中。本文提出了一种基于BP(反向传播)神经网络的非线性系统辨识与控制方法,旨在通过神经网络有效地对非线性系统进行建模与控制。
首先,本文通过构造一个基于输入输出数据的非线性系统模型,并使用BP神经网络对该系统进行辨识。训练数据通过生成一组带有非线性特性的时间序列数据,作为BP神经网络的输入与目标输出。然后,采用最小均方误差(MSE)作为优化目标,训练网络得到最优的权重和偏置,以实现对系统的准确建模。
在系统辨识完成后,本文进一步设计了基于模型参考自适应控制(MRAC)的控制策略。MRAC控制器利用神经网络模型对系统的非线性动态特性进行补偿,从而提高系统的控制精度和鲁棒性。通过仿真结果,验证了该方法在实际应用中的有效性,特别是在非线性系统的状态估计和控制精度方面,相较于传统控制方法具有显著优势。
最后,本文通过仿真实验对比了训练过程中的误差变化、期望输出与实际输出的差异,并给出了相应的测试误差分析。实验结果表明,基于BP神经网络的系统辨识方法能够准确逼近非线性系统的真实动态特性,并有效提高控制精度,具有较强的应用前景。
算法流程

运行效果
运行 BP_identification.m
图1:训练指标分析

(1)轮次:虽然目标是训练10000轮,但目前仅完成了300轮。由于提前停止(早停机制)已被触发,训练提前结束。通常,早停机制用于防止过拟合,但也可能导致模型在达到最佳性能之前就停止训练。
(2)性能和模度:性能(均方误差)从0.65改善到0.00184,接近设定目标0.0001。模度也从1.13下降到0.00477,但未达到目标1e-05。这表明模型的性能在接近收敛,但由于早停的影响,可能未完全达到预期的性能。
图2:训练数据和系统输出对比

(1)特征分析:系统输出为周期性方波信号,且波形保持稳定,波动范围稳定在±1区间,没有明显的失真或衰减。信号的频率和幅值基本恒定,表明训练的目标波形复现得很好。
(2)意义:这说明神经网络能够稳定地预测和重现目标的波形,训练效果已经较为理想。系统在训练数据上没有过拟合,并能有效地捕捉到目标信号的规律。
图3:训练误差曲线分析

(1)误差变化:训练误差从初始的0.65下降到接近0,且收敛速度较快,没有出现震荡或发散。这表明网络已经在大部分训练过程中有效学习到了目标函数,并且梯度下降算法能够稳定收敛。
(2)结论:训练误差的快速下降表明模型在训练集上的表现非常好,虽然早停触发,但训练效果还是达到了理想的水平。
图4:实际输出与期望输出对比

(1)对比分析:实际输出和期望输出之间有一些小的差异,主要体现在峰值处,但整体趋势和波形是相似的。误差集中在峰值附近,整体上误差在可接受范围内。
(2)意义:这表明网络模型可以较好地复现期望波形,差异不大,模型在测试集上的泛化能力也很好。
图5:预测误差分析

(1)误差分布:误差基本呈均匀波动的周期性模式,波动范围在±0.2以内。虽然峰值误差达到1.0,但整体误差维持在合理范围内。
(2)结论:尽管存在一些周期性的误差波动,但由于误差分布在合理范围内,模型的预测性能是稳定和可靠的。
图5:评价指标
![]()
训练误差:0.0020463
(1)训练误差的均方误差(MSE)较小,这表明在训练集上的拟合效果很好。通常,MSE越小,意味着模型的预测结果与实际目标之间的差距越小。
(2)0.0020463的误差值相对较小,表明模型在训练过程中能够很好地学习到数据的规律。
测试误差:0.15547
(1)测试误差的均方误差(MSE)显著大于训练误差,表明模型在训练集和测试集之间的泛化能力存在差异。这通常表明存在一定的过拟合问题,即模型在训练数据上表现很好,但对新的、未见过的数据(测试数据)预测效果较差。
(2)0.15547的误差相对较大,表明测试集的预测结果与实际目标之间的差距较大,可能存在一定的误差积累。
总结:训练误差较小表明模型在训练数据上拟合得较好,但测试误差较大则指示模型的泛化能力较弱。您可以通过一些正则化和调整策略来提高模型对未见过数据的预测能力。
相关文章:
基于Matlab BP神经网络的非线性系统辨识与控制研究
随着现代工业和科学技术的不断发展,非线性系统的建模和控制成为了自动化领域中的重要研究课题。传统的系统辨识方法往往难以应对系统的复杂性和非线性特性,而人工神经网络(ANN)凭借其强大的逼近能力和自适应性,已广泛应…...
3D基因组工具(HiC可视化)trackc--bioinfomatics tools 35
01 3D genome data analysis guides 茶树三维基因组-文献精读19 https://trackc.readthedocs.io/en/latest/install.html #官网 https://github.com/seqyuan/trackc #官网https://trackc.readthedocs.io/en/latest/analysis_guide/index.html #HiC可视化案例 …...
【大模型微调】图片转pdf
有时候图片需要转成pdf https://www.bilibili.com/opus/982151156821131282 https://help.pdf24.org/ https://www.bilibili.com/video/BV163v2eyEWo/?vd_source=8318f88fcdf4948d2b21fae7c9cf3184 2024最新!小白如何安装破解版的 Acrobat https://www.32r.com/zt/dgyjzzrj/ …...
Linux-Ubuntu16.04摄像头 客户端抓取帧并保存为PNG
1.0:client.c抓取帧并保存为PNG #include <stdio.h> // 标准输入输出库 #include <stdlib.h> // 标准库,包含内存分配等函数 #include <string.h> // 字符串操作库 #include <linux/videodev2.h> // V4L2 视频设备…...
手机ip地址取决于什么?可以随便改吗
手机IP地址是指手机在连接到互联网时所获得的唯一网络地址,这个地址由一串数字组成,用于在网络中标识和定位设备。每个设备在连接到网络时都会被分配一个IP地址,它可以帮助数据包在网络中准确地找到目标设备。那么,手机IP地址究竟…...
计算机网络:TCP/IP协议的五大重要特性介绍
目录 一、逻辑编址 二、路由选择 三、名称解析 四、错误控制和流量控制 五、多应用支持 今天给大家聊聊TCP/IP协议中五大重要特性相关的知识,希望对大家深入了解该协议提供一些帮助! 一、逻辑编址 首先要了解什么是物理地址、逻辑地址。 ●...
Java与AWS S3的文件操作
从零开始:Java与AWS S3的文件操作 一、什么是 AWS S3?AWS S3 的特点AWS S3 的应用场景 二、Java整合S3方法使用 MinIO 客户端操作 S3使用 AWS SDK 操作 S3 (推荐使用) 三、总结 一、什么是 AWS S3? Amazon Simple Sto…...
详解 YOLOv5 模型运行参数含义以及设置及在 PyCharm 中的配置方法
详解 YOLOv5 模型运行参数含义以及设置及在 PyCharm 中的配置方法 这段代码中使用的命令行参数允许用户在运行 YOLOv5 模型时自定义多种行为和设置。以下是各个参数的详细说明和使用示例,以及如何在 PyCharm 中设置这些参数以确保正确运行带有参数的脚本。 命令行…...
Vue根据Div内容的高度给其Div设置style height
在 Vue.js 中,你可以使用 JavaScript 来动态地根据 div 的内容高度来设置其 style 的 height 属性。这通常是在组件挂载或更新时完成的,因为这时你已经有了实际的 DOM 元素可以操作。 以下是一个简单的例子,展示了如何实现这一点:…...
驱动篇的开端
准备 在做之后的动作前,因为win7及其以上的版本默认是不支持DbgPrint(大家暂时理解为内核版的printf)的打印,所以,为了方便我们的调试,我们先要修改一下注册表 创建一个reg文件然后运行 Windows Registr…...
OpenSSL 自建CA 以及颁发证书(网站部署https双向认证)
前言 1、前面写过一篇 阿里云免费ssl证书申请与部署,大家可以去看下 一、openssl 安装说明 1、这部分就不再说了,我使用centos7.9,是自带 openssl的,window的话,要去下载安装 二、CA机构 CA机构,全称为…...
吾杯网络安全技能大赛WP(部分)
吾杯网络安全技能大赛WP(部分) MISC Sign 直接16进制解码即可 原神启动 将图片用StegSolve打开 找到了压缩包密码 将解出docx文件改为zip 找到了一张图片和zip 再把图片放到stegSlove里找到了img压缩包的密码 然后在document.xml里找到了text.zip压缩包密码 然后就出来fl…...
按vue组件实例类型实现非侵入式国际化多语言翻译
#vue3##国际化##本地化##international# web界面国际化,I18N(Internationalization,国际化),I11L(International,英特纳雄耐尔),L10N(Localization,本地化)&…...
Java入门:22.集合的特点,List,Set和Map集合的使用
1 什么是集合 本质就是容器的封装,可以存储多个元素 数组一旦创建,长度就不能再改变了。 数组一旦创建,存储内容的类型不能改变。 数组可以存储基本类型,也可以存储引用类型。 数组可以通过length获得容量的大小,但…...
重生之我在异世界学编程之C语言:深入指针篇(下)
大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 目录 题集(1)指针笔试题1&a…...
理解Parquet文件和Arrow格式:从Hugging Face数据集的角度出发
parquet发音:美 [pɑrˈkeɪ] 镶木地板;拼花木地板 理解Parquet文件和Arrow格式:从Hugging Face数据集的角度出发 引言 在机器学习和大数据处理中,数据的存储和传输格式对于性能至关重要。两种广泛使用的格式是 Parquet 和 Arr…...
下载 M3U8 格式的视频
要下载 M3U8 格式的视频(通常是 HLS 视频流),可以尝试以下几种方法: 方法 1:使用下载工具(推荐) 1. IDM(Internet Download Manager): 安装 IDM 并启用浏…...
Tomcat使用教程
下载地址:https://tomcat.apache.org/ 配置环境变量 变量名: CATALINA_HOME 变量值: D:\tools\apache-tomcat-9.0.97 Path: %CATALINA_HOME%\bin 启动Tomcat(打开命令提示符) startup.bat 解决乱码问题(打开conf\logging.properties) java.util.logging.Conso…...
LabVIEW氢气纯化控制系统
基于LabVIEW的氢气纯化控制系统满足氢气纯化过程中对精确控制的需求,具备参数设置、过程监控、数据记录和报警功能,体现了LabVIEW在复杂工业控制系统中的应用效能。 项目背景 在众多行业中,尤其是石油化工和航天航空领域,氢气作为…...
现在的电商风口已经很明显了
随着电商行业的不断发展,直播带货的热潮似乎正逐渐降温,而货架电商正成为新的焦点。抖音等平台越来越重视货架电商,强调搜索功能的重要性,预示着未来的电商中心将转向货架和搜索。 在这一转型期,AI技术与电商的结合为…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...
【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...
【题解-洛谷】P10480 可达性统计
题目:P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图,分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M,接下来 M M M 行每行两个整数 x , y x,y x,y,表示从 …...
Python爬虫(四):PyQuery 框架
PyQuery 框架详解与对比 BeautifulSoup 第一部分:PyQuery 框架介绍 1. PyQuery 是什么? PyQuery 是一个 Python 的 HTML/XML 解析库,它采用了 jQuery 的语法风格,让开发者能够用类似前端 jQuery 的方式处理文档解析。它的核心特…...
.Net Framework 4/C# 面向对象编程进阶
一、继承 (一)使用继承 子类可以继承父类原有的属性和方法,也可以增加原来父类不具备的属性和方法,或者直接重写父类中的某些方法。 C# 中使用“:”来表示两个类的继承。子类不能访问父类的私有成员,但是可以访问其公有成员,即只要使用 public 声明类成员,就既可以让一…...
