基于Matlab BP神经网络的非线性系统辨识与控制研究
随着现代工业和科学技术的不断发展,非线性系统的建模和控制成为了自动化领域中的重要研究课题。传统的系统辨识方法往往难以应对系统的复杂性和非线性特性,而人工神经网络(ANN)凭借其强大的逼近能力和自适应性,已广泛应用于系统辨识和控制中。本文提出了一种基于BP(反向传播)神经网络的非线性系统辨识与控制方法,旨在通过神经网络有效地对非线性系统进行建模与控制。
首先,本文通过构造一个基于输入输出数据的非线性系统模型,并使用BP神经网络对该系统进行辨识。训练数据通过生成一组带有非线性特性的时间序列数据,作为BP神经网络的输入与目标输出。然后,采用最小均方误差(MSE)作为优化目标,训练网络得到最优的权重和偏置,以实现对系统的准确建模。
在系统辨识完成后,本文进一步设计了基于模型参考自适应控制(MRAC)的控制策略。MRAC控制器利用神经网络模型对系统的非线性动态特性进行补偿,从而提高系统的控制精度和鲁棒性。通过仿真结果,验证了该方法在实际应用中的有效性,特别是在非线性系统的状态估计和控制精度方面,相较于传统控制方法具有显著优势。
最后,本文通过仿真实验对比了训练过程中的误差变化、期望输出与实际输出的差异,并给出了相应的测试误差分析。实验结果表明,基于BP神经网络的系统辨识方法能够准确逼近非线性系统的真实动态特性,并有效提高控制精度,具有较强的应用前景。
算法流程
运行效果
运行 BP_identification.m
图1:训练指标分析
(1)轮次:虽然目标是训练10000轮,但目前仅完成了300轮。由于提前停止(早停机制)已被触发,训练提前结束。通常,早停机制用于防止过拟合,但也可能导致模型在达到最佳性能之前就停止训练。
(2)性能和模度:性能(均方误差)从0.65改善到0.00184,接近设定目标0.0001。模度也从1.13下降到0.00477,但未达到目标1e-05。这表明模型的性能在接近收敛,但由于早停的影响,可能未完全达到预期的性能。
图2:训练数据和系统输出对比
(1)特征分析:系统输出为周期性方波信号,且波形保持稳定,波动范围稳定在±1区间,没有明显的失真或衰减。信号的频率和幅值基本恒定,表明训练的目标波形复现得很好。
(2)意义:这说明神经网络能够稳定地预测和重现目标的波形,训练效果已经较为理想。系统在训练数据上没有过拟合,并能有效地捕捉到目标信号的规律。
图3:训练误差曲线分析
(1)误差变化:训练误差从初始的0.65下降到接近0,且收敛速度较快,没有出现震荡或发散。这表明网络已经在大部分训练过程中有效学习到了目标函数,并且梯度下降算法能够稳定收敛。
(2)结论:训练误差的快速下降表明模型在训练集上的表现非常好,虽然早停触发,但训练效果还是达到了理想的水平。
图4:实际输出与期望输出对比
(1)对比分析:实际输出和期望输出之间有一些小的差异,主要体现在峰值处,但整体趋势和波形是相似的。误差集中在峰值附近,整体上误差在可接受范围内。
(2)意义:这表明网络模型可以较好地复现期望波形,差异不大,模型在测试集上的泛化能力也很好。
图5:预测误差分析
(1)误差分布:误差基本呈均匀波动的周期性模式,波动范围在±0.2以内。虽然峰值误差达到1.0,但整体误差维持在合理范围内。
(2)结论:尽管存在一些周期性的误差波动,但由于误差分布在合理范围内,模型的预测性能是稳定和可靠的。
图5:评价指标
训练误差:0.0020463
(1)训练误差的均方误差(MSE)较小,这表明在训练集上的拟合效果很好。通常,MSE越小,意味着模型的预测结果与实际目标之间的差距越小。
(2)0.0020463的误差值相对较小,表明模型在训练过程中能够很好地学习到数据的规律。
测试误差:0.15547
(1)测试误差的均方误差(MSE)显著大于训练误差,表明模型在训练集和测试集之间的泛化能力存在差异。这通常表明存在一定的过拟合问题,即模型在训练数据上表现很好,但对新的、未见过的数据(测试数据)预测效果较差。
(2)0.15547的误差相对较大,表明测试集的预测结果与实际目标之间的差距较大,可能存在一定的误差积累。
总结:训练误差较小表明模型在训练数据上拟合得较好,但测试误差较大则指示模型的泛化能力较弱。您可以通过一些正则化和调整策略来提高模型对未见过数据的预测能力。
相关文章:

基于Matlab BP神经网络的非线性系统辨识与控制研究
随着现代工业和科学技术的不断发展,非线性系统的建模和控制成为了自动化领域中的重要研究课题。传统的系统辨识方法往往难以应对系统的复杂性和非线性特性,而人工神经网络(ANN)凭借其强大的逼近能力和自适应性,已广泛应…...

3D基因组工具(HiC可视化)trackc--bioinfomatics tools 35
01 3D genome data analysis guides 茶树三维基因组-文献精读19 https://trackc.readthedocs.io/en/latest/install.html #官网 https://github.com/seqyuan/trackc #官网https://trackc.readthedocs.io/en/latest/analysis_guide/index.html #HiC可视化案例 …...

【大模型微调】图片转pdf
有时候图片需要转成pdf https://www.bilibili.com/opus/982151156821131282 https://help.pdf24.org/ https://www.bilibili.com/video/BV163v2eyEWo/?vd_source=8318f88fcdf4948d2b21fae7c9cf3184 2024最新!小白如何安装破解版的 Acrobat https://www.32r.com/zt/dgyjzzrj/ …...

Linux-Ubuntu16.04摄像头 客户端抓取帧并保存为PNG
1.0:client.c抓取帧并保存为PNG #include <stdio.h> // 标准输入输出库 #include <stdlib.h> // 标准库,包含内存分配等函数 #include <string.h> // 字符串操作库 #include <linux/videodev2.h> // V4L2 视频设备…...

手机ip地址取决于什么?可以随便改吗
手机IP地址是指手机在连接到互联网时所获得的唯一网络地址,这个地址由一串数字组成,用于在网络中标识和定位设备。每个设备在连接到网络时都会被分配一个IP地址,它可以帮助数据包在网络中准确地找到目标设备。那么,手机IP地址究竟…...

计算机网络:TCP/IP协议的五大重要特性介绍
目录 一、逻辑编址 二、路由选择 三、名称解析 四、错误控制和流量控制 五、多应用支持 今天给大家聊聊TCP/IP协议中五大重要特性相关的知识,希望对大家深入了解该协议提供一些帮助! 一、逻辑编址 首先要了解什么是物理地址、逻辑地址。 ●...

Java与AWS S3的文件操作
从零开始:Java与AWS S3的文件操作 一、什么是 AWS S3?AWS S3 的特点AWS S3 的应用场景 二、Java整合S3方法使用 MinIO 客户端操作 S3使用 AWS SDK 操作 S3 (推荐使用) 三、总结 一、什么是 AWS S3? Amazon Simple Sto…...

详解 YOLOv5 模型运行参数含义以及设置及在 PyCharm 中的配置方法
详解 YOLOv5 模型运行参数含义以及设置及在 PyCharm 中的配置方法 这段代码中使用的命令行参数允许用户在运行 YOLOv5 模型时自定义多种行为和设置。以下是各个参数的详细说明和使用示例,以及如何在 PyCharm 中设置这些参数以确保正确运行带有参数的脚本。 命令行…...

Vue根据Div内容的高度给其Div设置style height
在 Vue.js 中,你可以使用 JavaScript 来动态地根据 div 的内容高度来设置其 style 的 height 属性。这通常是在组件挂载或更新时完成的,因为这时你已经有了实际的 DOM 元素可以操作。 以下是一个简单的例子,展示了如何实现这一点:…...

驱动篇的开端
准备 在做之后的动作前,因为win7及其以上的版本默认是不支持DbgPrint(大家暂时理解为内核版的printf)的打印,所以,为了方便我们的调试,我们先要修改一下注册表 创建一个reg文件然后运行 Windows Registr…...

OpenSSL 自建CA 以及颁发证书(网站部署https双向认证)
前言 1、前面写过一篇 阿里云免费ssl证书申请与部署,大家可以去看下 一、openssl 安装说明 1、这部分就不再说了,我使用centos7.9,是自带 openssl的,window的话,要去下载安装 二、CA机构 CA机构,全称为…...

吾杯网络安全技能大赛WP(部分)
吾杯网络安全技能大赛WP(部分) MISC Sign 直接16进制解码即可 原神启动 将图片用StegSolve打开 找到了压缩包密码 将解出docx文件改为zip 找到了一张图片和zip 再把图片放到stegSlove里找到了img压缩包的密码 然后在document.xml里找到了text.zip压缩包密码 然后就出来fl…...

按vue组件实例类型实现非侵入式国际化多语言翻译
#vue3##国际化##本地化##international# web界面国际化,I18N(Internationalization,国际化),I11L(International,英特纳雄耐尔),L10N(Localization,本地化)&…...

Java入门:22.集合的特点,List,Set和Map集合的使用
1 什么是集合 本质就是容器的封装,可以存储多个元素 数组一旦创建,长度就不能再改变了。 数组一旦创建,存储内容的类型不能改变。 数组可以存储基本类型,也可以存储引用类型。 数组可以通过length获得容量的大小,但…...

重生之我在异世界学编程之C语言:深入指针篇(下)
大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 目录 题集(1)指针笔试题1&a…...

理解Parquet文件和Arrow格式:从Hugging Face数据集的角度出发
parquet发音:美 [pɑrˈkeɪ] 镶木地板;拼花木地板 理解Parquet文件和Arrow格式:从Hugging Face数据集的角度出发 引言 在机器学习和大数据处理中,数据的存储和传输格式对于性能至关重要。两种广泛使用的格式是 Parquet 和 Arr…...

下载 M3U8 格式的视频
要下载 M3U8 格式的视频(通常是 HLS 视频流),可以尝试以下几种方法: 方法 1:使用下载工具(推荐) 1. IDM(Internet Download Manager): 安装 IDM 并启用浏…...

Tomcat使用教程
下载地址:https://tomcat.apache.org/ 配置环境变量 变量名: CATALINA_HOME 变量值: D:\tools\apache-tomcat-9.0.97 Path: %CATALINA_HOME%\bin 启动Tomcat(打开命令提示符) startup.bat 解决乱码问题(打开conf\logging.properties) java.util.logging.Conso…...

LabVIEW氢气纯化控制系统
基于LabVIEW的氢气纯化控制系统满足氢气纯化过程中对精确控制的需求,具备参数设置、过程监控、数据记录和报警功能,体现了LabVIEW在复杂工业控制系统中的应用效能。 项目背景 在众多行业中,尤其是石油化工和航天航空领域,氢气作为…...

现在的电商风口已经很明显了
随着电商行业的不断发展,直播带货的热潮似乎正逐渐降温,而货架电商正成为新的焦点。抖音等平台越来越重视货架电商,强调搜索功能的重要性,预示着未来的电商中心将转向货架和搜索。 在这一转型期,AI技术与电商的结合为…...

Uniapp触底刷新
在你的代码中,使用了 scroll-view 来实现一个可滚动的评论区域,并且通过监听 scrolltolower 事件来触发 handleScrollToLower 函数,以实现“触底更新”或加载更多评论的功能。 关键部分分析: scroll-view 组件: scroll-view 是一…...

开源项目 - face parsing 人脸区域分割 人像区域分割 人脸分割 人像区域分割 BiSeNet
开源项目 - face parsing 人脸区域分割 人像区域分割 人脸分割 人像区域分割 BiSeNet 项目地址:GitHub - XIAN-HHappy/face_parsing: face_parsing 脸部分割 示例: 助力快速掌握数据集的信息和使用方式。 数据可以如此美好!...

python游戏设计---飞机大战
1.前言 上次做飞机大战游戏有人这么说: 好好好!今天必须整一个,今天我们来详细讲解一下,底部找素材文件下载!!! 2.游戏制作 目录如下: 1.导入的包 import pygame import sys imp…...

13TB的StarRocks大数据库迁移过程
公司有一套StarRocks的大数据库在大股东的腾讯云环境中,通过腾讯云的对等连接打通,通过dolphinscheduler调度datax离线抽取数据和SQL计算汇总,还有在大股东的特有的Flink集群环境,该环境开发了flink开发程序包部署,实时…...

HTTP代理有那些常见的安全协议?
在数据采集领域,HTTP代理扮演着至关重要的角色,它不仅帮助我们访问互联网资源,还涉及到数据的安全传输。了解HTTP代理中常见的安全协议对于保护数据安全、提高数据采集效率至关重要。那么,有哪些安全协议是在HTTP代理中常用的呢&a…...

Kylin Server V10 下基于Kraft模式搭建Kafka集群
一、Kraft 模式与 ZooKeeper 模式简介 在Kafka 2.8 之前,Kafka 重度依赖 ZooKeeper 集群做元数据管理、Controller 的选举等(统称为共识服务);当ZooKeeper 集群性能发生抖动时,Kafka 的性能也会受到很大的影响。如下图所示: 在 Kafka 2.8 之后,引入了基于 Raft …...

tauri使用github action打包编译多个平台arm架构和inter架构包踩坑记录
这些error的坑,肯定是很多人不想看到的,我的开源软件PakePlus是使用tauri开发的,PakePlus是一个界面化将任何网站打包为轻量级跨平台软件的程序,利用Tauri轻松构建轻量级多端桌面应用和多端手机应用,为了实现发布的时候…...

Python爬虫与窗口实现翻译小工具(仅限学习交流)
Python爬虫与窗口实现翻译小工具(仅限学习交流) 在工作中,遇到一个不懂的单词时,就会去网页找对应的翻译,我们可以用Python爬虫与窗口配合,制作一个简易的翻译小工具,不需要打开网页,自动把翻译结果显示出来。 整个过程比较简单。 # This is a sample Python script. …...

紫光展锐联合上汽海外发布量产车型,赋能汽车智能化
当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。 11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发…...

Maven 打包出现问题解决方案
我执行 mvn install 报如下错误 可是我在 web 模块中能正确引用到 common 的类,于是我把 web 引用到的 common 中的类先移动到 web 模块中,然后把 common 模块的类都删掉,然后再次执行 mvn install,结果报错如下: [ERROR] Faile…...