基于Matlab BP神经网络的非线性系统辨识与控制研究
随着现代工业和科学技术的不断发展,非线性系统的建模和控制成为了自动化领域中的重要研究课题。传统的系统辨识方法往往难以应对系统的复杂性和非线性特性,而人工神经网络(ANN)凭借其强大的逼近能力和自适应性,已广泛应用于系统辨识和控制中。本文提出了一种基于BP(反向传播)神经网络的非线性系统辨识与控制方法,旨在通过神经网络有效地对非线性系统进行建模与控制。
首先,本文通过构造一个基于输入输出数据的非线性系统模型,并使用BP神经网络对该系统进行辨识。训练数据通过生成一组带有非线性特性的时间序列数据,作为BP神经网络的输入与目标输出。然后,采用最小均方误差(MSE)作为优化目标,训练网络得到最优的权重和偏置,以实现对系统的准确建模。
在系统辨识完成后,本文进一步设计了基于模型参考自适应控制(MRAC)的控制策略。MRAC控制器利用神经网络模型对系统的非线性动态特性进行补偿,从而提高系统的控制精度和鲁棒性。通过仿真结果,验证了该方法在实际应用中的有效性,特别是在非线性系统的状态估计和控制精度方面,相较于传统控制方法具有显著优势。
最后,本文通过仿真实验对比了训练过程中的误差变化、期望输出与实际输出的差异,并给出了相应的测试误差分析。实验结果表明,基于BP神经网络的系统辨识方法能够准确逼近非线性系统的真实动态特性,并有效提高控制精度,具有较强的应用前景。
算法流程
运行效果
运行 BP_identification.m
图1:训练指标分析
(1)轮次:虽然目标是训练10000轮,但目前仅完成了300轮。由于提前停止(早停机制)已被触发,训练提前结束。通常,早停机制用于防止过拟合,但也可能导致模型在达到最佳性能之前就停止训练。
(2)性能和模度:性能(均方误差)从0.65改善到0.00184,接近设定目标0.0001。模度也从1.13下降到0.00477,但未达到目标1e-05。这表明模型的性能在接近收敛,但由于早停的影响,可能未完全达到预期的性能。
图2:训练数据和系统输出对比
(1)特征分析:系统输出为周期性方波信号,且波形保持稳定,波动范围稳定在±1区间,没有明显的失真或衰减。信号的频率和幅值基本恒定,表明训练的目标波形复现得很好。
(2)意义:这说明神经网络能够稳定地预测和重现目标的波形,训练效果已经较为理想。系统在训练数据上没有过拟合,并能有效地捕捉到目标信号的规律。
图3:训练误差曲线分析
(1)误差变化:训练误差从初始的0.65下降到接近0,且收敛速度较快,没有出现震荡或发散。这表明网络已经在大部分训练过程中有效学习到了目标函数,并且梯度下降算法能够稳定收敛。
(2)结论:训练误差的快速下降表明模型在训练集上的表现非常好,虽然早停触发,但训练效果还是达到了理想的水平。
图4:实际输出与期望输出对比
(1)对比分析:实际输出和期望输出之间有一些小的差异,主要体现在峰值处,但整体趋势和波形是相似的。误差集中在峰值附近,整体上误差在可接受范围内。
(2)意义:这表明网络模型可以较好地复现期望波形,差异不大,模型在测试集上的泛化能力也很好。
图5:预测误差分析
(1)误差分布:误差基本呈均匀波动的周期性模式,波动范围在±0.2以内。虽然峰值误差达到1.0,但整体误差维持在合理范围内。
(2)结论:尽管存在一些周期性的误差波动,但由于误差分布在合理范围内,模型的预测性能是稳定和可靠的。
图5:评价指标
训练误差:0.0020463
(1)训练误差的均方误差(MSE)较小,这表明在训练集上的拟合效果很好。通常,MSE越小,意味着模型的预测结果与实际目标之间的差距越小。
(2)0.0020463的误差值相对较小,表明模型在训练过程中能够很好地学习到数据的规律。
测试误差:0.15547
(1)测试误差的均方误差(MSE)显著大于训练误差,表明模型在训练集和测试集之间的泛化能力存在差异。这通常表明存在一定的过拟合问题,即模型在训练数据上表现很好,但对新的、未见过的数据(测试数据)预测效果较差。
(2)0.15547的误差相对较大,表明测试集的预测结果与实际目标之间的差距较大,可能存在一定的误差积累。
总结:训练误差较小表明模型在训练数据上拟合得较好,但测试误差较大则指示模型的泛化能力较弱。您可以通过一些正则化和调整策略来提高模型对未见过数据的预测能力。
相关文章:

基于Matlab BP神经网络的非线性系统辨识与控制研究
随着现代工业和科学技术的不断发展,非线性系统的建模和控制成为了自动化领域中的重要研究课题。传统的系统辨识方法往往难以应对系统的复杂性和非线性特性,而人工神经网络(ANN)凭借其强大的逼近能力和自适应性,已广泛应…...

3D基因组工具(HiC可视化)trackc--bioinfomatics tools 35
01 3D genome data analysis guides 茶树三维基因组-文献精读19 https://trackc.readthedocs.io/en/latest/install.html #官网 https://github.com/seqyuan/trackc #官网https://trackc.readthedocs.io/en/latest/analysis_guide/index.html #HiC可视化案例 …...
【大模型微调】图片转pdf
有时候图片需要转成pdf https://www.bilibili.com/opus/982151156821131282 https://help.pdf24.org/ https://www.bilibili.com/video/BV163v2eyEWo/?vd_source=8318f88fcdf4948d2b21fae7c9cf3184 2024最新!小白如何安装破解版的 Acrobat https://www.32r.com/zt/dgyjzzrj/ …...
Linux-Ubuntu16.04摄像头 客户端抓取帧并保存为PNG
1.0:client.c抓取帧并保存为PNG #include <stdio.h> // 标准输入输出库 #include <stdlib.h> // 标准库,包含内存分配等函数 #include <string.h> // 字符串操作库 #include <linux/videodev2.h> // V4L2 视频设备…...

手机ip地址取决于什么?可以随便改吗
手机IP地址是指手机在连接到互联网时所获得的唯一网络地址,这个地址由一串数字组成,用于在网络中标识和定位设备。每个设备在连接到网络时都会被分配一个IP地址,它可以帮助数据包在网络中准确地找到目标设备。那么,手机IP地址究竟…...

计算机网络:TCP/IP协议的五大重要特性介绍
目录 一、逻辑编址 二、路由选择 三、名称解析 四、错误控制和流量控制 五、多应用支持 今天给大家聊聊TCP/IP协议中五大重要特性相关的知识,希望对大家深入了解该协议提供一些帮助! 一、逻辑编址 首先要了解什么是物理地址、逻辑地址。 ●...
Java与AWS S3的文件操作
从零开始:Java与AWS S3的文件操作 一、什么是 AWS S3?AWS S3 的特点AWS S3 的应用场景 二、Java整合S3方法使用 MinIO 客户端操作 S3使用 AWS SDK 操作 S3 (推荐使用) 三、总结 一、什么是 AWS S3? Amazon Simple Sto…...
详解 YOLOv5 模型运行参数含义以及设置及在 PyCharm 中的配置方法
详解 YOLOv5 模型运行参数含义以及设置及在 PyCharm 中的配置方法 这段代码中使用的命令行参数允许用户在运行 YOLOv5 模型时自定义多种行为和设置。以下是各个参数的详细说明和使用示例,以及如何在 PyCharm 中设置这些参数以确保正确运行带有参数的脚本。 命令行…...
Vue根据Div内容的高度给其Div设置style height
在 Vue.js 中,你可以使用 JavaScript 来动态地根据 div 的内容高度来设置其 style 的 height 属性。这通常是在组件挂载或更新时完成的,因为这时你已经有了实际的 DOM 元素可以操作。 以下是一个简单的例子,展示了如何实现这一点:…...

驱动篇的开端
准备 在做之后的动作前,因为win7及其以上的版本默认是不支持DbgPrint(大家暂时理解为内核版的printf)的打印,所以,为了方便我们的调试,我们先要修改一下注册表 创建一个reg文件然后运行 Windows Registr…...

OpenSSL 自建CA 以及颁发证书(网站部署https双向认证)
前言 1、前面写过一篇 阿里云免费ssl证书申请与部署,大家可以去看下 一、openssl 安装说明 1、这部分就不再说了,我使用centos7.9,是自带 openssl的,window的话,要去下载安装 二、CA机构 CA机构,全称为…...

吾杯网络安全技能大赛WP(部分)
吾杯网络安全技能大赛WP(部分) MISC Sign 直接16进制解码即可 原神启动 将图片用StegSolve打开 找到了压缩包密码 将解出docx文件改为zip 找到了一张图片和zip 再把图片放到stegSlove里找到了img压缩包的密码 然后在document.xml里找到了text.zip压缩包密码 然后就出来fl…...
按vue组件实例类型实现非侵入式国际化多语言翻译
#vue3##国际化##本地化##international# web界面国际化,I18N(Internationalization,国际化),I11L(International,英特纳雄耐尔),L10N(Localization,本地化)&…...
Java入门:22.集合的特点,List,Set和Map集合的使用
1 什么是集合 本质就是容器的封装,可以存储多个元素 数组一旦创建,长度就不能再改变了。 数组一旦创建,存储内容的类型不能改变。 数组可以存储基本类型,也可以存储引用类型。 数组可以通过length获得容量的大小,但…...

重生之我在异世界学编程之C语言:深入指针篇(下)
大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 目录 题集(1)指针笔试题1&a…...

理解Parquet文件和Arrow格式:从Hugging Face数据集的角度出发
parquet发音:美 [pɑrˈkeɪ] 镶木地板;拼花木地板 理解Parquet文件和Arrow格式:从Hugging Face数据集的角度出发 引言 在机器学习和大数据处理中,数据的存储和传输格式对于性能至关重要。两种广泛使用的格式是 Parquet 和 Arr…...
下载 M3U8 格式的视频
要下载 M3U8 格式的视频(通常是 HLS 视频流),可以尝试以下几种方法: 方法 1:使用下载工具(推荐) 1. IDM(Internet Download Manager): 安装 IDM 并启用浏…...

Tomcat使用教程
下载地址:https://tomcat.apache.org/ 配置环境变量 变量名: CATALINA_HOME 变量值: D:\tools\apache-tomcat-9.0.97 Path: %CATALINA_HOME%\bin 启动Tomcat(打开命令提示符) startup.bat 解决乱码问题(打开conf\logging.properties) java.util.logging.Conso…...

LabVIEW氢气纯化控制系统
基于LabVIEW的氢气纯化控制系统满足氢气纯化过程中对精确控制的需求,具备参数设置、过程监控、数据记录和报警功能,体现了LabVIEW在复杂工业控制系统中的应用效能。 项目背景 在众多行业中,尤其是石油化工和航天航空领域,氢气作为…...

现在的电商风口已经很明显了
随着电商行业的不断发展,直播带货的热潮似乎正逐渐降温,而货架电商正成为新的焦点。抖音等平台越来越重视货架电商,强调搜索功能的重要性,预示着未来的电商中心将转向货架和搜索。 在这一转型期,AI技术与电商的结合为…...

Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...