当前位置: 首页 > news >正文

指针(上)

目录

内存和地址

指针变量和地址

取地址(&)

解引用(*)

大小

类型

意义

const修饰

修饰变量

修饰指针

指针运算

指针+- 整数

指针-指针

指针的关系运算

野指针

概念

成因

避免

assert断言

指针的使用

strlen的模拟实现

传值调用和传址调用

指针和数组

特殊情况

指针访问

指针数组

模拟⼆维数组

 二级指针


在开始正式介绍之前我先提一点,就是计算机中常⻅的单位:

1Byte(比特位) = 8bit(字节)

1KB = 1024Byte

1MB = 1024KB

1GB = 1024MB

1TB = 1024GB

1PB = 1024TB

以下的代码我均是在32位平台下地址运行的代码(因为32位通过调试观察会更清晰)

内存和地址

        内存空间是把内存划分为⼀个个的内存单元,每个内存单元的⼤⼩取1个字节。其中,每个内存单元,相当于⼀个学⽣宿舍,⼀个字节空间⾥⾯能放8个⽐特位,就好⽐同学们住的⼋⼈间,每个⼈是⼀个⽐特位。每个内存单元也都有⼀个编号(这个编号就相当于宿舍房间的⻔牌号)。⽣活中我们把⻔牌号也叫地址,在计算机中我们把内存单元的编号也称为地址。C语⾔中给地址起了新的名字叫:指针。

所以我们可以理解为:内存单元的编号 == 地址 == 指针

指针变量和地址

取地址(&)

我们可以通过&(取地址操作符)取出变量的内存起始地址,把地址可以存放到一个变量中,这个变量就是指针变量

#include <stdio.h>
int main()
{int a = 10;//在内存中开辟一块空间int* p = &a;//这里我们对变量a,取出它的地址,可以使用&操作符。//a变量占用4个字节的空间,这里是将a的4个字节的第一个字节的地址存放在p变量中//p就是一个指针变量。return 0;
}

上述的代码就是创建了整型变量a,内存中申请4个字节,⽤于存放整数10,其中每个字节都有地址,上图中4个字节的地址分别是:

0x0093F7FC

0x0093F7FD

0x0093F7FE

0x0093F7FF

解引用(*)

我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针)指向的对象,而实现这个操作就需要借助⼀个操作符叫解引⽤操作符(*)。

#include <stdio.h>
int main()
{int a = 100;int* p = &a;*p = 0;return 0;
}

上⾯代码中第5⾏就使⽤了解引⽤操作符,*p 的意思就是通过p中存放的地址,找到指向的空间,*p其实就是a变量了;所以*p = 0,这个操作符是把a改成了0(其实这⾥是把a的修改交给了p来操作,这样对a的修改,就多了⼀种的途径,写代码就会更加灵活,往后学习就会知道指针非常香)

大小

32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4个字节才能存储。

如果指针变量是⽤来存放地址的,那么指针变的⼤⼩就得是4个字节的空间才可以。

同理64位机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列,存储起来就需要8个字节的空间,指针变量的⼤⼩就是8个字节

总结:指针变量的⼤⼩取决于地址的⼤⼩

32位平台下地址是32个bit位,指针变量⼤⼩是4个字节

64位平台下地址是64个bit位,指针变量⼤⼩是8个字节

注意指针变量的⼤⼩和类型是⽆关的,只要指针类型的变量,在相同的平台下,⼤⼩都是相同的。

类型

//我们如何理解指针的类型呢?
int a = 10;
int * pa = &a;

这里p左边写的是int* ,是在说明p是指针变量,而前面的int是在说明p指向的是整型(int)类型的对象那如果要存放一个char类型的变量ch呢,那就要用char 类型的指针变量,同理其它类型也如此

char  *pc = NULL;
int   *pi = NULL;
short *ps = NULL;
long  *pl = NULL;
float *pf = NULL;
double *pd = NULL;

可以看出,指针的定义方式是: type + *,那就是说:

char* 类型的指针是为了存放 char 类型变量的地址。

short* 类型的指针是为了存放 short 类型变量的地址。

int* 类型的指针是为了存放 int 类型变量的地址。

意义

指针变量的⼤⼩和类型⽆关,只要是指针变量,在同⼀个平台下,⼤⼩都是⼀样的,为什么还要有各种各样的指针类型呢?

① 指针的解引用

通过调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第⼀个字节改为0。那我们就知道char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节。

结论:指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)。

②指针+-整数

通过这段代码,我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。这就是指针变量的类型差异带来的变化。指针+1,其实跳过1个指针指向的元素。指针可以+1,那也可以-1。

结论:指针的类型决定了指针向前或者向后⾛⼀步有多⼤(距离)。

③ void* 指针

在指针类型中有⼀种特殊的类型是 void * 类型的,可以理解为⽆具体类型的指针(或者叫泛型指针),这种类型的指针可以⽤来接受任意类型地址。但是也有局限性, void* 类型的指针不能直接进⾏指针的+-整数和解引⽤的运算。 

在上⾯的代码中,将⼀个int类型的变量的地址赋值给⼀个char类型的指针变量。编译器给出了⼀个警告,是因为类型不兼容。⽽使⽤void类型就不会有这样的问题。

使⽤void*类型的指针接收地址:

这⾥我们可以看到, void* 类型的指针可以接收不同类型的地址,但是⽆法直接进⾏指针运算。

void* 类型指针的作用:

        ⼀般 void* 类型的指针是使⽤在函数参数的部分,⽤来接收不同类型数据的地址,这样的设计可以实现泛型编程的效果。使得⼀个函数来处理多种类型的数据,void* 类型还是很香的,后面介绍会用到。

const修饰

修饰变量

变量是可以修改的,如果把变量的地址交给⼀个指针变量,通过指针变量的也可以修改这个变量。但是如果我们希望⼀个变量加上⼀些限制,不能被修改,怎么做呢?这就是const的作⽤。

#include <stdio.h>
int main()
{int a = 0;a = 20;//a是可以修改的const int b = 0;b = 20;//b是不能被修改的return 0;
}

上述代码中b是不能被修改的,其实b本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对b进⾏修改,就不符合语法规则,就报错,致使没法直接修改b。

int main()
{const int b = 0;printf("b = %d\n", b);int*p = &b;*b = 20;printf("b = %d\n", b);return 0;
}

但是如果我们绕过b,使⽤b的地址,去修改b就能做到了,但是这样做是在打破语法规则,是不合理的,我们的初衷就是为了b不能被修改,那么这时候就需要用const修饰指针。

修饰指针

① const放在*的左边情况

#include <stdio.h>
int main()
{int n = 10;int m = 20;const int* p = &n;//编译器报错:表达式必须是可修改的左值*p = 20;p = &m; return 0;
}

② const放在*的右边情况

int main()
{int n = 10;int m = 20;int* const p = &n;*p = 20; //编译器报错:表达式必须是可修改的左值p = &m;return 0;
}

③ const放在*的左右两边情况

#include <stdio.h>
int main()
{int n = 10;int m = 20;int const* const p = &n;//编译器报错:表达式必须是可修改的左值*p = 20; //编译器报错:表达式必须是可修改的左值p = &m;return 0;
}

结论:const修饰指针变量的时候

① const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。但是指针变量本⾝的内容可变。

② const如果放在*的右边,修饰的是指针变量本⾝,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变。

指针运算

指针+- 整数

因为数组在内存中是连续存放的,只要知道第⼀个元素的地址,顺藤摸⽠就能找到后⾯的所有元素。

#include <stdio.h>
int main()
{int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };int* p = &arr[0];int i = 0;int sz = sizeof(arr) / sizeof(arr[0]);//数组下标是从0开始的for (i = 0; i < sz; i++){printf("%d ", *(p + i));//p+i 这⾥就是指针+整数}return 0;
}

指针-指针

#include <stdio.h>
int my_strlen(char* s)
{char* p = s;while (*p != '\0')p++;return p - s;
}
int main()
{printf("%d\n", my_strlen("abc"));return 0;
}

指针的关系运算

#include <stdio.h>
int main()
{//数组名是数组首元素的地址int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };int* p = &arr[0];int sz = sizeof(arr) / sizeof(arr[0]);while (p < arr + sz) //指针的⼤⼩⽐较{printf("%d ", *p);p++;}return 0;
}

野指针

概念

野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

成因

① 指针未初始化

#include <stdio.h>
int main()
{ int *p;//局部变量指针未初始化,默认为随机值*p = 20;return 0;
}

② 指针越界访问

#include <stdio.h>
int main()
{int arr[10] = {0};int *p = &arr[0];int i = 0;for(i=0; i<=11; i++){//当指针指向的范围超出数组arr的范围时,p就是野指针*(p++) = i;}return 0;
}

③ 指针指向的空间释放

int* test()
{int n = 100;return &n;
}
int main()
{int*p = test();printf("%d\n", *p);return 0;
}

避免

野指针的成因大多数都与我们不规范的语法有关,有没有办法避免呢?答案肯定是有的。

① 指针初始化

如果明确知道指针指向哪⾥就直接赋值地址,如果不知道指针应该指向哪⾥,可以给指针赋值NULL,NULL 是C语⾔中定义的⼀个标识符常量,值是0,0也是地址,这个地址是⽆法使⽤的,读写地址会报错

//NULL实际是⼀个宏,在传统的C头⽂件(stddef.h)中,可以看到如下代码:
#ifdef __cplusplus#define NULL 0
#else#define NULL ((void *)0)
#endif
//初始化
#include <stdio.h>
int main()
{int num = 10;int*p1 = &num;int*p2 = NULL;return 0;
}

② 小心指针越界

⼀个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问。(使用数组时特别要注意这点)

③ 检查有效性

当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使⽤这个指针访问空间的时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问,同时使⽤指针之前可以判断指针是否为NULL。

我们可以把野指针想象成野狗,野狗放任不管是⾮常危险的,所以我们可以找⼀棵树把野狗拴起来,就相对安全了,给指针变量及时赋值为NULL,其实就类似把野狗栓起来,就是把野指针暂时管理起来。

不过野狗即使拴起来我们也要绕着⾛,不能去挑逗野狗,有点危险;对于指针也是,在使⽤之前,我们也要判断是否为NULL,看看是不是被拴起来起来的野狗,如果是不能直接使⽤,如果不是我们再去使⽤。

#include <stdio.h>
int main()
{int arr[10] = {1,2,3,4,5,6,7,8,9,10};int *p = &arr[0];int i = 0;for(i=0; i<10; i++){*(p++) = i;}//此时p已经越界了,可以把p置为NULLp = NULL;//下次使⽤的时候,判断p不为NULL的时候再使⽤//...p = &arr[0];//重新让p获得地址if(p != NULL) //判断{//...}return 0;
}

④ 小心局部变量

这和我们成因的第三点相关,因为函数执行完就会释放,即使返回了一个指针,但指针指向什么谁都不知道,所以返回的是一个野指针,这点也是特别要小心的。

assert断言

我觉得这个东西有必要介绍给大家,因为这个使用起来会特别香,特别是到数据结构阶段,那时候会经常使用assert断言。

assert.h 头⽂件定义了宏 assert() ,⽤于在运⾏时确保程序符合指定条件,如果不符合,就报错终⽌运⾏。这个宏常常被称为“断⾔”。

assert(p != NULL);

上⾯代码在程序运⾏到这⼀⾏语句时,验证变量 p 是否等于 NULL 。如果确实不等于 NULL ,程序继续运⾏,否则就会终⽌运⾏,并且给出报错信息提⽰。

assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值⾮零), assert() 不会产⽣任何作⽤,程序继续运⾏。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误流 stderr 中写⼊⼀条错误信息,显⽰没有通过的表达式,以及包含这个表达式的⽂件名和⾏号。

assert() 的使⽤对程序员是⾮常友好的,使⽤ assert() 有⼏个好处:它不仅能⾃动标识⽂件和出问题的⾏号,还有⼀种⽆需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问题,不需要再做断⾔,就在 #include <assert.h> 语句的前⾯,定义⼀个宏 NDEBUG 。

#define NDEBUG
#include <assert.h>

然后,重新编译程序,编译器就会禁⽤⽂件中所有的 assert() 语句。如果程序⼜出现问题,可以移除这条 #define NDEBUG 指令(或者把它注释掉),再次编译,这样就重新启⽤了 assert() 语句。

assert() 的缺点是,因为引⼊了额外的检查,增加了程序的运⾏时间。⼀般我们可以在 Debug 中使⽤,在 Release 版本中选择禁⽤ assert 就⾏,在 VS 这样的集成开发环境中,在 Release 版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,在 Release 版本不影响⽤⼾使⽤时程序的效率。

指针的使用

前面介绍了那么多,下面我将介绍实际点的应用

strlen的模拟实现

库函数strlen的功能是求字符串⻓度,统计的是字符串中 \0 之前的字符的个数。

//函数原型如下
size_t strlen ( const char * str );

参数str接收⼀个字符串的起始地址,然后开始统计字符串中 \0 之前的字符个数,最终返回⻓度。如果要模拟实现只要从起始地址开始向后逐个字符的遍历,只要不是 \0 字符,计数器就+1,这样直到 \0 就停⽌。

//模拟实现
int my_strlen(const char* str)
{int count = 0;assert(str);while (*str){count++;str++;}return count;
}
int main()
{int len = my_strlen("abcdef");printf("%d\n", len);return 0;
}

传值调用和传址调用

我们先来看下面一段代码

#include <stdio.h>
void Swap1(int x, int y)
{int tmp = x;x = y;y = tmp;
}
int main()
{int a = 1;int b = 3;printf("交换前:a=%d b=%d\n", a, b);Swap1(a, b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}

我们的目的是交换两个数的值,但是我们运行代码发现,它们两个值并没有发生变化。这是为什么呢?代码看上去明明没有问题啊。

我们调试起来分别取它们的地址发现,原来在Swap1函数内部创建了形参x和y接收a和b的值,但是x的地址是0x00b9f854,y的地址是0x00b9f858,x和y确实接收到了a和b的值,不过x的地址和a的地址不⼀样,y的地址和b的地址不⼀样,相当于x和y是独⽴的空间,那么在Swap1函数内部交换x和y的值,⾃然不会影响a和b,当Swap1函数调⽤结束后回到main函数,a和b的没法交换。

Swap1函数在使⽤的时候,是把变量本⾝直接传递给了函数,这种调⽤函数的⽅式就是传值调⽤。

这时候就要借助指针了,我们现在要解决的就是当调⽤Swap函数的时候,Swap函数内部操作的就是main函数中的a和b,直接将a和b的值交换了。那么如果我们在main函数中将a和b的地址传递给Swap函数,Swap函数⾥边通过地址间接的操作main函数中的a和b,是不是就达到交换的效果。

#include <stdio.h>
void Swap2(int* px, int *py)
{int tmp = *px;*px = *py;*py = tmp;
}
int main()
{int a = 1;int b = 3;printf("交换前:a=%d b=%d\n", a, b);Swap2(&a, &b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}

我们再次运行代码终于显示a和b完成了交换。我们可以看到实现成Swap2的⽅式,顺利完成了任务,这⾥调⽤Swap2函数的时候是将变量的地址传递给了函数,这种函数调⽤⽅式叫:传址调⽤。

我们再次调试起来发现px存储的是a的地址,py存储的是b的地址,当我们解引用操作就相当于间接对a和b进行操作。

传址调⽤,可以让函数和主调函数之间建⽴真正的联系,在函数内部可以修改主调函数中的变量;所以未来函数中只是需要主调函数中的变量值来实现计算,就可以采⽤传值调⽤。如果函数内部要修改主调函数中的变量的值,就需要传址调⽤。

总结:

①如果需要被改动,则需要传递指向这个参数的指针。

②如果不用被改动,可以直接传递这个参数。

大家一定要搞清这个点,因为后续的内容也会涉及到,特别特别重要!

指针和数组

特殊情况

我们先来看下面这段代码

我们发现数组名和数组⾸元素的地址打印出的结果⼀模⼀样,所以数组名就是数组⾸元素(第⼀个元素)的地址

但是有两种情况数组名代表的不是数组首元素的地址。

#include <stdio.h>
int main()
{int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };printf("%d\n", sizeof(arr));return 0;
}

输出的结果是:40,如果arr是数组⾸元素的地址,那输出应该的应该是4/8才对。

① sizeof(数组名),sizeof中单独放数组名,这⾥的数组名表⽰整个数组,计算的是整个数组的⼤⼩,单位是字节

② &数组名,这⾥的数组名表⽰整个数组,取出的是整个数组的地址(整个数组的地址和数组⾸元素的地址是有区别的)

除此之外,任何地⽅使⽤数组名,数组名都表⽰⾸元素的地址。

#include <stdio.h>
int main()
{int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };printf("&arr[0] = %p\n", &arr[0]);printf("arr = %p\n", arr);printf("&arr = %p\n", &arr);return 0;
}

大家运行这段代码会发现,三个打印结果⼀模⼀样,但我刚刚不是说代表的整个数组的地址吗,我们接着往下看

#include <stdio.h>
int main()
{int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };printf("&arr[0] = %p\n", &arr[0]);printf("&arr[0]+1 = %p\n", &arr[0] + 1);printf("arr = %p\n", arr);printf("arr+1 = %p\n", arr + 1);printf("&arr = %p\n", &arr);printf("&arr+1 = %p\n", &arr + 1);return 0;
}

输出结果:
&arr[0] = 0077F820
&arr[0]+1 = 0077F824
arr = 0077F820
arr+1 = 0077F824
&arr = 0077F820
&arr+1 = 0077F848

这⾥我们发现&arr[0]和&arr[0]+1相差4个字节,arr和arr+1 相差4个字节,是因为&arr[0] 和 arr 都是⾸元素的地址,+1就是跳过⼀个元素。但是&arr 和 &arr+1相差40个字节,这就是因为&arr是数组的地址,+1 操作是跳过整个数组的

想必⼤家应该搞清楚数组名的意义了。

指针访问

通过代码运行的结果可以发现 p+i 其实计算的是数组 arr 下标为i的地址。那么我们就可以直接通过指针来访问数组。

#include <stdio.h>
int main()
{int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };int* p = arr; //指针存放数组首元素的地址int sz = sizeof(arr) / sizeof(arr[0]);int i = 0;for (i = 0; i < sz; i++){printf("%d ", *(p + i));}return 0;
}

另外要提一点就是

① arr[i]等价于*(arr+i)

① arri等价于((arr+i)+j)

指针数组

指针数组是指针还是数组?我们类⽐⼀下,整型数组,是存放整型的数组,字符数组是存放字符的数组。那指针数组呢?那不就是存放指针的数组。

指针数组的每个元素是地址,⼜可以指向⼀块区域。

模拟⼆维数组

#include <stdio.h>
int main()
{int arr1[] = { 1,2,3,4,5 };int arr2[] = { 2,3,4,5,6 };int arr3[] = { 3,4,5,6,7 };//数组名是数组⾸元素的地址,类型是int*的,就可以存放在parr数组中int* parr[3] = { arr1, arr2, arr3 };int i = 0;int j = 0;for (i = 0; i < 3; i++){for (j = 0; j < 5; j++){printf("%d ", parr[i][j]);}printf("\n");}return 0;
}

parr[i]是访问parr数组的元素,parr[i]找到的数组元素指向了整型⼀维数组,parri就是整型⼀维数组中的元素。

虽然上面的代码模拟出⼆维数组的效果,但实际上并⾮完全是⼆维数组,因为每⼀⾏并⾮是连续的。

 二级指针

指针变量也是变量,是变量就有地址,那指针变量的地址存放在哪里?这时候就需要借助二级指针了。

对于⼆级指针的运算有:

① *ppa 通过对ppa中的地址进⾏解引⽤,这样找到的是 pa , *ppa 其实访问的就是 pa

int b = 20;
*ppa = &b;//等价于 pa = &b;

② **ppa 先通过 *ppa 找到 pa ,然后对 pa 进⾏解引⽤操作: *pa ,那找到的是 a

**ppa = 30;
//等价于*pa = 30;
//等价于a = 30;

相关文章:

指针(上)

目录 内存和地址 指针变量和地址 取地址&#xff08;&&#xff09; 解引用&#xff08;*&#xff09; 大小 类型 意义 const修饰 修饰变量 修饰指针 指针运算 指针- 整数 指针-指针 指针的关系运算 野指针 概念 成因 避免 assert断言 指针的使用 strl…...

张伟楠动手学强化学习笔记|第一讲(上)

张伟楠动手学强化学习笔记|第一讲&#xff08;上&#xff09; 人工智能的两种任务类型 预测型任务 有监督学习无监督学习 决策型任务 强化学习 序贯决策(Sequential Decision Making) 智能体序贯地做出一个个决策&#xff0c;并接续看到新的观测&#xff0c;知道最终任务结…...

python脚本:Word文档批量转PDF格式

读取指定文件夹中的所有 .doc 和 .docx 文件&#xff0c;并利用 Word 软件将它们转换为 PDF 格式&#xff0c;并保存在同一个文件夹中&#xff0c;以源文件命名。 请确保你已经安装了 Microsoft Word&#xff0c;并且在运行脚本时关闭了所有正在运行的 Word 实例。运行该程序时…...

性能测试常见面试问题和答案

一、有没有做过性能测试&#xff0c;具体怎么做的 性能测试是有做过的&#xff0c;不过我们那个项目的性能做得不多&#xff0c;公司要求也不严格。一般SE 给我们相关的性能需求&#xff0c;首先我们需要对性能需求进行场景分析与设计&#xff0c;这里&#xff0c;其实主要就是…...

uniapp进阶技巧:如何优雅地封装request实例

在uniapp开发过程中&#xff0c;合理封装网络请求是提高代码质量和开发效率的关键。本文将介绍一种更为优雅的封装方式&#xff0c;通过创建一个request实例来管理不同类型的HTTP请求。 一、准备工作 在开始封装之前&#xff0c;请确保你的项目中已经安装了uniapp开发环境&…...

实验五、流式视频服务程序mjpg-streamer移植实验

实验日期: 2024 年 10 月 22 日 报告退发 (订正 、 重做) 一、实验目的 1、掌握流式视频服务程序源代码mjpg-streamer的交叉编译方法; 2、掌握在tiny210开发板中运行mjpg-streamer方法; 二、实验内容 1、开启一台烧写了嵌入式Linux系统的…...

(长期更新)《零基础入门 ArcGIS(ArcMap) 》实验三----学校选址与路径规划(超超超详细!!!)

目录 实验三 学校选址与道路规划 3.1 实验内容及目的 3.1.1 实验内容 3.1.2 实验目的 3.2 实验方案 3.3 操作流程 3.3.1 环境设置 3.3.2 地势分析 &#xff08;1&#xff09;提取坡度: (2)重分类: 3.3.3 学校点分析 (1)欧氏距离: (2)重分类: 3.3.4 娱乐场所点分析 (1)欧氏距离…...

L16.【LeetCode笔记】前序遍历

目录 1.知识回顾 2.题目 代码模板 3.分析 数组的初始化 malloc开辟的几种方案对比 奇怪的参数returnSize 做法 代码框架 4.代码 提交结果 5.PreOrder函数常见的错误写法 1.知识回顾 106.【C语言】数据结构之二叉树的三种递归遍历方式 2.题目 https://leetcode.…...

泰州榉之乡全托机构探讨:自闭症并非家庭的 “末日”

当提及自闭症时&#xff0c;很多人会担忧地问&#xff1a;自闭症对家庭来说是毁灭性的吗&#xff1f;今天&#xff0c;泰州榉之乡全托机构就来为大家解开这个疑问。 榉之乡大龄自闭症托养机构在江苏、广东、江西等地都有分校&#xff0c;一直致力于为大龄自闭症患者提供专业的支…...

BiGRU:双向门控循环单元在序列处理中的深度探索

一、引言 在当今的人工智能领域&#xff0c;序列数据的处理是一个极为重要的任务&#xff0c;涵盖了自然语言处理、语音识别、时间序列分析等多个关键领域。循环神经网络&#xff08;RNN&#xff09;及其衍生结构在处理序列数据方面发挥了重要作用。然而&#xff0c;传统的 RN…...

【vue-router】Vue-router如何实现路由懒加载

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…...

Linux网络编程基础

目录 一、网络发展历史和分层 1.1Internet的历史 1.2网络的体系结构 1.2.1OSI模型 1.2.2TCP/IP协议族 1.2.3各层典型协议 1.2.4网络的封包和拆包 二、网络编程的预备知识 2.1Socket 2.1.1概念 2.1.2类型 2.2IP地址 2.3端口号 2.4字节序 一、网络发展历史和分层 …...

MySQL中的幻读问题

1. 什么是幻读&#xff1f; 幻读是一种数据库事务中可能出现的并发问题&#xff0c;具体表现为&#xff1a;在同一个事务中&#xff0c;前后两次查询的结果集不同&#xff0c;仿佛“幻影”一般&#xff0c;出现了原本不存在的数据。 1.1 具体表现&#xff1a; 现象描述 事务 A…...

AI后端工程师面试题的内容

AI后端工程师面试题主要包括以下几个方面的内容‌&#xff1a; ‌一、技术基础和项目经验‌&#xff1a; ‌1. 微服务架构的理解和应用‌&#xff1a;请描述你对微服务架构的理解&#xff0c;并举例说明一个你参与过的微服务项目&#xff0c;阐述你在该项目中扮演的角色和所承…...

MFC工控项目实例三十五读取数据库数据

点击按钮打开文件夹中的数据文件生成曲线 相关代码 void CSEAL_PRESSUREDlg::OnTesReport() {CFileDialog dlgOpen(TRUE/*TRUE打开&#xff0c;FALSE保存*/,0,0,OFN_NOCHANGEDIR|OFN_FILEMUSTEXIST,"All Files(mdb.*)|*.*||",//文件过滤器NULL);CString mdb_1, m…...

OpenWrt -制作ubifs文件系统的固件

目的 创建一个ubifs为文件系统的镜像 将backup目录中的内容打包成ubifs文件系统。 ubifs的分区定义 ubi-backup.cfg 文件内容如下&#xff0c; [backup] modeubi imagenand-ipq6018-single.img vol_id0 vol_typedynamic vol_namebackup [bkver] modeubi imagebackup.ubifs v…...

C++ - 继承

继承的基本概念 继承就是一种代码的复用. 子类通过继承父类, 就能使用父类的变量, 方法. 学生和老师这两种身份, 他们都有共同的属性: 他们都有名称, 年龄, 性别 .... 当然他们也有各种独有的属性, 学生有学号, 老师有工号 .... 对于这些共有的属性, 我们可以将它们提取出来: …...

华为服务器使用U盘重装系统

一、准备工作 下载官方系统&#xff08;注意服务器CPU的架构是x86-64还是aarch64&#xff0c;不然可能报意想不到的错&#xff09;制作启动U盘&#xff08;下载rufus制作工具&#xff0c;注意文件系统选FAT32还是NTFS&#xff09; 二、安装步骤 将U盘插入USB接口重启服务器…...

网络分层模型( OSI、TCP/IP、五层协议)

1、网络分层模型 计算机网络是一个极其复杂的系统。想象一下最简单的情况&#xff1a;两台连接在网络上的计算机需要相互传输文件。不仅需要确保存在一条传输数据的通路&#xff0c;还需要完成以下几项工作&#xff1a; 发起通信的计算机必须激活数据通路&#xff0c;这包括发…...

前端开发 之 15个页面加载特效上【附完整源码】

文章目录 一&#xff1a;彩球环绕加载特效1.效果展示2.HTML完整代码 二&#xff1a;跷跷板加载特效1.效果展示2.HTML完整代码 三&#xff1a;两个圆形加载特效1.效果展示2.HTML完整代码 四&#xff1a;半环加载特效1.效果展示2.HTML完整代码 五&#xff1a;音乐波动加载特效1.效…...

Spring Boot使用JDK 21虚拟线程

JDK 21引入的虚拟线程&#xff08;Virtual Threads&#xff09;是 Project Loom 的一部分&#xff0c;旨在显著简化并发编程并提高 Java 应用的可扩展性。以下是虚拟线程的主要特点&#xff1a; 1. 概念 虚拟线程是轻量级线程&#xff0c;与传统的操作系统线程不同&#xff0…...

《从0到1常用Map集合核心摘要 + 不深不浅底层核心》

《从0到1常用Map集合核心摘要不深不浅底层核心》 前置知识 什么是键值对 ​ 键值对是一种数据结构&#xff0c;键是唯一标识&#xff0c;值是对应数据&#xff0c;用来快速查找信息。例&#xff1a; {"name": "Alice"}&#xff0c;键是name&#xff0c;…...

12 设计模式之工厂方法模式

一、什么是工厂方法模式&#xff1f; 1.定义 在软件开发中&#xff0c;设计模式 是解决常见软件设计问题的最佳实践。而 工厂方法模式&#xff08;Factory Method Pattern&#xff09; 作为创建型设计模式之一&#xff0c;常常被用来解决对象创建问题。它通过将对象的创建交给…...

spaCy 入门与实战:强大的自然语言处理库

spaCy 入门与实战&#xff1a;强大的自然语言处理库 spaCy 是一个现代化、工业级的自然语言处理&#xff08;NLP&#xff09;库&#xff0c;以高效、易用和功能丰富著称。它被广泛应用于文本处理、信息提取和机器学习任务中。本文将介绍 spaCy 的核心功能&#xff0c;并通过一…...

python包的管理和安装——笔记

1.列出包 pip list pip freeze 用这2个可以查看当前python 下所有的包和版本&#xff0c;还有下载地址 如果只是想导出当前的环境 可以用 2.安装pipreqs pip install pipreqs&#xff0c;pipreqs ./可以导出当前项目的包这个包 遇到编码报错 pipreqs ./ --encodingutf8 p…...

Vue前端页面内嵌套本项目iframe窗口的通信传输方式

一、目的 想要在iframe中使用本项目页面、并能够与其父页面组件实现实时通信。Vue前端页面内嵌套本项目iframe窗口的通信传输方式-星林社区 https://www.jl1mall.com/forum/PostDetail?postId20241202172800023969 二、iframe通信方式 1.接收消息 页面需要监听 message 事件…...

【WEB开发.js】addEventListener事件监听器的绑定和执行次数的问题(小心踩坑)

假设我们有一个按钮&#xff0c;用户点击该按钮后&#xff0c;会选择一个文件&#xff0c;且我们希望每次点击按钮时只触发一次文件处理。下面我会给你一个简单的例子&#xff0c;展示放在函数内部和放在函数外部的区别。 1. 将事件监听器放在函数内部&#xff08;问题的根源&…...

用于LiDAR测量的1.58um单芯片MOPA(一)

--翻译自M. Faugeron、M. Krakowski1等人2014年的文章 1.简介 如今&#xff0c;人们对高功率半导体器件的兴趣日益浓厚&#xff0c;这些器件主要用于遥测、激光雷达系统或自由空间通信等应用。与固态激光器相比&#xff0c;半导体器件更紧凑且功耗更低&#xff0c;这在低功率供…...

【GPT】代谢概念解读

以下是对代谢中分解代谢和合成代谢两个概念的深入解读&#xff0c;用简单易懂的方式展开说明&#xff1a; 1. 分解代谢&#xff08;Catabolism&#xff09; 什么是分解代谢&#xff1f; 分解代谢是身体把大分子“拆开”的过程。就像把一个三明治分解成面包片、肉片和菜叶&#…...

Devops-git篇-01-git环境配置

环境配置 设置用户签名 配置用户名&#xff1a; git config --global user.name 你的用户名 配置邮箱&#xff1a; git config --global user.email 注册的邮箱 配置好之后&#xff0c;可以用git config --global --list命令查看配置是否OK $ git config --global --list u…...