leetcode hot100【Leetcode 72.编辑距离】java实现
Leetcode 72.编辑距离
题目描述
给定两个单词 word1 和 word2,返回将 word1 转换为 word2 所使用的最少操作数。
你可以对一个单词执行以下三种操作之一:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse (替换 'h' 为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入: word1 = "intention", word2 = "execution"
输出: 5
解释:
intention -> inention (删除 't')
inention -> exention (替换 'i' 为 'e')
exention -> exection (替换 'n' 为 'c')
exection -> execuion (替换 'e' 为 'u')
execuion -> execution (替换 'i' 为 't')
Java 实现代码
public class Solution {public int minDistance(String word1, String word2) {int m = word1.length();int n = word2.length();// dp[i][j] 表示 word1[0..i-1] 和 word2[0..j-1] 的最小编辑距离int[][] dp = new int[m + 1][n + 1];// 初始化 DP 数组for (int i = 0; i <= m; i++) {for (int j = 0; j <= n; j++) {if (i == 0) {dp[i][j] = j; // 如果 word1 为空,需要插入 j 个字符} else if (j == 0) {dp[i][j] = i; // 如果 word2 为空,需要删除 i 个字符} else {if (word1.charAt(i - 1) == word2.charAt(j - 1)) {dp[i][j] = dp[i - 1][j - 1]; // 如果字符相等,不需要做任何操作} else {dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;// 三种操作的最小值:删除、插入、替换}}}}return dp[m][n];}
}
解题思路
编辑距离问题是一个经典的动态规划问题,我们可以通过动态规划来逐步解决。
状态定义:
- 定义
dp[i][j]为word1[0..i-1]和word2[0..j-1]之间的最小编辑距离。状态转移:
- 如果
word1[i-1] == word2[j-1],则dp[i][j] = dp[i-1][j-1],表示如果两个字符相等,编辑距离不变。- 如果
word1[i-1] != word2[j-1],则dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1,表示三种操作的最小值:
dp[i-1][j] + 1:删除一个字符。dp[i][j-1] + 1:插入一个字符。dp[i-1][j-1] + 1:替换一个字符。初始状态:
dp[i][0] = i,表示word1[0..i-1]和空字符串的编辑距离是i(即删除所有字符)。dp[0][j] = j,表示 空字符串 和word2[0..j-1]的编辑距离是j(即插入所有字符)。目标:
- 最终结果为
dp[m][n],其中m和n分别是word1和word2的长度。
复杂度分析
时间复杂度:
O(m * n),其中m和n分别是word1和word2的长度。我们需要计算一个m x n的 DP 表格,每个元素的计算是常数时间。空间复杂度:
O(m * n),我们需要一个m x n的 DP 表格来存储子问题的解。
执行过程示例
假设 word1 = "horse",word2 = "ros",我们通过动态规划计算编辑距离。
-
初始化 DP 数组:
dp = [[0, 1, 2, 3],[1, 0, 0, 0],[2, 0, 0, 0],[3, 0, 0, 0],[4, 0, 0, 0],[5, 0, 0, 0] ] -
填充 DP 数组:
i = 1, j = 1,word1[0] = 'h',word2[0] = 'r',不相等,dp[1][1] = min(dp[0][1], dp[1][0], dp[0][0]) + 1 = 1。i = 1, j = 2,word1[0] = 'h',word2[1] = 'o',不相等,dp[1][2] = min(dp[0][2], dp[1][1], dp[0][1]) + 1 = 2。i = 1, j = 3,word1[0] = 'h',word2[2] = 's',不相等,dp[1][3] = min(dp[0][3], dp[1][2], dp[0][2]) + 1 = 3。i = 2, j = 1,word1[1] = 'o',word2[0] = 'r',不相等,dp[2][1] = min(dp[1][1], dp[2][0], dp[1][0]) + 1 = 2。i = 2, j = 2,word1[1] = 'o',word2[1] = 'o',相等,dp[2][2] = dp[1][1] = 1。i = 2, j = 3,word1[1] = 'o',word2[2] = 's',不相等,dp[2][3] = min(dp[1][3], dp[2][2], dp[1][2]) + 1 = 2。i = 3, j = 1,word1[2] = 'r',word2[0] = 'r',相等,dp[3][1] = dp[2][0] = 2。i = 3, j = 2,word1[2] = 'r',word2[1] = 'o',不相等,dp[3][2] = min(dp[2][2], dp[3][1], dp[2][1]) + 1 = 2。i = 3, j = 3,word1[2] = 'r',word2[2] = 's',不相等,dp[3][3] = min(dp[2][3], dp[3][2], dp[2][2]) + 1 = 3。i = 4, j = 1,word1[3] = 's',word2[0] = 'r',不相等,dp[4][1] = min(dp[3][1], dp[4][0], dp[3][0]) + 1 = 3。i = 4, j = 2,word1[3] = 's',word2[1] = 'o',不相等,dp[4][2] = min(dp[3][2], dp[4][1], dp[3][1]) + 1 = 3。- `i = 4, j = 3
,word1[3] = ‘s’, word2[2] = ‘s’,相等,dp[4][3] = dp[3][2] = 2`。
i = 5, j = 1,word1[4] = 'e',word2[0] = 'r',不相等,dp[5][1] = min(dp[4][1], dp[5][0], dp[4][0]) + 1 = 4。i = 5, j = 2,word1[4] = 'e',word2[1] = 'o',不相等,dp[5][2] = min(dp[4][2], dp[5][1], dp[4][1]) + 1 = 4。i = 5, j = 3,word1[4] = 'e',word2[2] = 's',不相等,dp[5][3] = min(dp[4][3], dp[5][2], dp[4][2]) + 1 = 3。
-
最终 DP 数组:
dp = [[0, 1, 2, 3],[1, 1, 2, 3],[2, 2, 1, 2],[3, 2, 2, 3],[4, 3, 3, 2],[5, 4, 4, 3] ] -
结果为
dp[5][3] = 3,即编辑距离为 3。
相关文章:
leetcode hot100【Leetcode 72.编辑距离】java实现
Leetcode 72.编辑距离 题目描述 给定两个单词 word1 和 word2,返回将 word1 转换为 word2 所使用的最少操作数。 你可以对一个单词执行以下三种操作之一: 插入一个字符删除一个字符替换一个字符 示例 1: 输入: word1 "horse", word2 &…...
腾讯阅文集团Java后端开发面试题及参考答案
Java 的基本数据类型有哪些?Byte 的数值范围是多少? Java 的基本数据类型共有 8 种,可分为 4 类: 整数类型:包括 byte、short、int 和 long。byte 占 1 个字节,其数值范围是 - 128 到 127,用于表示较小范围的整数,节省内存空间,在处理一些底层的字节流数据或对内存要求…...
protobuf实现Hbase数据压缩
目录 前置HBase数据压缩效果获取数据(反序列化) 前置 安装说明 使用说明 HBaseDDL和DML操作 HBase数据压缩 问题 在上文的datain中原文 每次写入数据会写入4个单元格的内容,现在希望能对其进行筛减,合并成1格,减少存储空间(序列…...
论文阅读之方法: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
The Tabula Muris Consortium., Overall coordination., Logistical coordination. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018). 论文地址:https://doi.org/10.1038/s41586-018-0590-4 代码地址…...
PHP语法学习(第三天)
老规矩,先回顾一下昨天学习的内容 PHP语法学习(第二天) 主要学习了PHP变量、变量的作用域、以及参数作用域。 今天由Tom来打开新的篇章 文章目录 echo 和 print 区别PHP echo 语句实例 PHP print 语句实例 PHP 数组创建数组利用array() 函数 数组的类型索引数组关联…...
PostgreSQL添加PostGIS扩展和存储坐标
一、安装 1、PostGIS安装:Getting Started | PostGIS 2、安装好后,执行下面sql CREATE EXTENSION postgis;SELECT PostGIS_Full_Version(); 二、使用 PostGIS文档:PostGIS 简介 — Introduction to PostGIS 建表: CREATE TAB…...
Flink四大基石之State(状态) 的使用详解
目录 一、有状态计算与无状态计算 (一)概念差异 (二)应用场景 二、有状态计算中的状态分类 (一)托管状态(Managed State)与原生状态(Raw State) 两者的…...
Linux中dos2unix详解
dos2unix 是一个用于将文本文件从DOS/Windows格式转换为Unix/Linux格式的工具。在不同的操作系统中,文本文件中的换行符表示方式是不一样的。具体来说: 在DOS和Windows系统中,换行由两个字符组成:回车(Carriage Retur…...
MySQL MVCC 介绍
MVCC(Multi-Version Concurrency Control)是一种并发控制机制,用于在多个并发事务同时读写数据库时保持数据的一致性和隔离性。MVCC通过在每个数据行上维护多个版本的数据来实现。当一个事务要对数据库中的数据进行修改时,MVCC不会…...
Linux篇之日志管理工具Logrotate介绍并结合crontab使用
1. Logrotate介绍 logrotate 是一个用于管理和轮换日志文件的工具,通常用于 Unix 和 Linux 系统。它可以自动化日志文件的轮换、压缩、删除和邮寄等操作,确保日志文件不会无限制地增长,占用过多的磁盘空间。 2. 主要功能 轮换:定期将日志文件移动到备份目录,并生成新的…...
Vulnhub靶场 Matrix-Breakout: 2 Morpheus 练习
目录 0x00 准备0x01 主机信息收集0x02 站点信息收集0x03 漏洞查找与利用1. 文件上传2. 提权 0x04 总结 0x00 准备 下载连接:https://download.vulnhub.com/matrix-breakout/matrix-breakout-2-morpheus.ova 介绍: This is the second in the Matrix-Br…...
秒杀项目 超卖问题 详解
秒杀项目中的超卖问题详解 秒杀场景是一种高并发场景,用户在短时间内大量涌入抢购有限的商品。超卖问题指的是由于系统设计不合理,导致实际售出的商品数量超过库存数量。 1. 为什么会出现超卖问题? 超卖问题通常由以下原因引发:…...
Linux系统编程之进程控制
概述 在Linux系统中,创建一个新的进程后,如何对该进程进行有效的控制,是一项非常重要的操作。控制进程状态的操作主要包括:进程的执行、进程的等待、进程的终止等。下面,我们将逐个进行介绍。 进程的执行 创建进程后&a…...
集合的相关性质与定义
集合 集合 集合描述了一组对象的集合,而映射描述了集合之间的对应关系。 集合 集合是由一组无序的,互不相同的对象组成的整体,集合中的对象称为元素或成员。集合可以用大括号{}表示,元素之间用逗号进行分隔。 定义: 集合 A …...
pytest自定义命令行参数
实际使用场景:pytest运行用例的时候,启动mitmdump进程试试抓包,pytest命令行启动的时候,传入mitmdump需要的参数(1)抓包生成的文件地址 (2)mitm的proxy设置 # 在pytest的固定文件中…...
c++预编译头文件
文章目录 c预编译头文件1.使用g编译预编译头文件2.使用visual studio进行预编译头文件2.1visual studio如何设置输出预处理文件(.i文件)2.2visual studio 如何设置预编译(初始创建空项目的情况下)2.3 visual studio打开输出编译时…...
YOLOv8模型pytorch格式转为onnx格式
一、YOLOv8的Pytorch网络结构 model DetectionModel((model): Sequential((0): Conv((conv): Conv2d(3, 64, kernel_size(3, 3), stride(2, 2), padding(1, 1))(act): SiLU(inplaceTrue))(1): Conv((conv): Conv2d(64, 128, kernel_size(3, 3), stride(2, 2), padding(1, 1))(a…...
电子课程开发中的典型误区
创建一个有效的电子课程需要仔细的规划和执行,但常见的错误可能会破坏其成功。以下是开发人员应该避免的一些典型陷阱: 1.缺乏明确的目标 如果没有明确的学习目标,课程可能会缺乏重点,让学习者不确定自己应该实现什么。明确、可衡…...
Docker 逃逸突破边界
免责声明 本博客文章仅供教育和研究目的使用。本文中提到的所有信息和技术均基于公开来源和合法获取的知识。本文不鼓励或支持任何非法活动,包括但不限于未经授权访问计算机系统、网络或数据。 作者对于读者使用本文中的信息所导致的任何直接或间接后果不承担任何…...
残差连接,就是当某一偏导等于0时,加上x偏导就是1,这样乘以1保证不失效
目录 残差连接,就是当某一偏导等于0时,加上x偏导就是1,这样乘以1保证不失效 残差连接中F(x)一般代表什么,将F(x)变为F(x) +x,这样不是改变了函数 本身的性质 F(x)=F(x) +x F(x)偏导若==0;偏导连乘就是0,这样就梯度消失了 F(x) +x;求偏导时x导数是1,保证不丢失F(x)…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
