当前位置: 首页 > news >正文

【Linux篇】权限管理 - 用户与组权限详解

在这里插入图片描述

一. 什么是权限?

首先权限是限制人的。 = 真实的人 + 身份角色
权限 = 角色 + 事物属性

二. 认识人–用户

Linux下的用户分为超级用户普通用户

  • root :超级管理员,几乎不受权限的约束
  • 普通用户 :受权限的约束
  • 超级用户的命令提示符是#,普通用户的命令提示符是$

命令: su [用户名]
功能: 切换用户
例如,要从root用户切换到普通用户user,则使用su user。也可以ctrl+d或者直接exit
要从普通用户user切换到root用户则使用su root(root可以省略),此时系统会提示输⼊root用户的密码。
普通用户切换为超级用户两种方式的区分:

  • 单独的su:只进行两者之间的身份切换,家目录不发生变化。
  • su -:以root的身份重新登陆Linux机器

普通人之间进行切换需要输入对方的密码;但root可以切换成任何人,不需要输入密码

如何不切换身份的情况下,执行更高权限的指令呢?
指令提权
sudoers:类似一张用户白名单
什么时候进行指令提权?
安装软件时,以root身份安装,任何人都可以使用,软件只需安装一次。

三. 文件属性

在这里插入图片描述
Linux下 权限 = 角色 + 事物属性
角色:
Linux下角色分为三类:

  1. 文件拥有者
  2. 文件所属组
  3. other

具体的用户:root 普通账号
角色:拥有者,所属组,other (由具体的角色扮演)

事物属性:
在这里插入图片描述

四. 权限

我们可以看到这里一行总共有九个字符。这九个字符三个为一对。
在这里插入图片描述
其中:

  • r: 表示可读权限
  • w: 表示可写权限
  • x: 表示可执行权限
  • -: 表示不具备此权限

超级用户不受权限的约束
在这里插入图片描述
例如这里的test.txt文件的拥有者是root,所属组是root,root对于test.txt文件没有读,写,执行权限,但是照样可以往test.txt文件中写入hello,并且能查看test.txt文件。

第一个位置表示是否可读,有就是r没有就是-
第二个位置表示是否可写,有就是w没有就是-
第三个位置表示是否具有可执行权限,有就是x没有就是-
所以说读,写,可执行这三个位置时固定的。

在这里插入图片描述
所以对于file.txt而言
拥有者所具有的权限是:

  • 可读
  • 可写
  • 不可执行

所属组所具有的权限是:

  • 可读
  • 可写
  • 不可执行

所属组所具有的权限是:

  • 可读
  • 不可写
  • 不可执行

权限的修改:

只有文件的拥有者和超级用户(root)才可以修改权限。

chmod
功能: 设置文件的访问权限。
格式: chmod [参数] 权限 文件名
常用选项:
用法一: 用户表示符、+ - =、权限字符

  • u:拥有者
  • g:所属组
  • o:其他人
  • a:所有用户(拥有者、所属组、其他人)
  • +:增加权限
  • -:取消权限
  • =:赋予权限

示例:
chmod u+r test.txt:给拥有者加上test.txt文件的可读权限
chmod u-w test.txt:去掉拥有者test.txt文件的可写权限
chmod u+rw,g+r,o+x test.txt:给拥有者加上可读可写权限 ,给所属组加上可读权限,给other加上可执行权限
chmod a+rwx test:给所有用户加上test.txt文件的可读,可写,可执行权限

不是你有可执行权限这个文件就能执行
Linux下能执行 = 真的是一个可执行文件 + 可执行权限
user,group,other和我自己进行身份对比的时候,依次只对比一次!

用法二:文件权限修改的八进制方案
在计算机中,是用1表示,否用0表示,在Linux中一个用户对应三个权限
在这里插入图片描述
例如sp.txt文件拥有者是sp,所对应的权限是---;所属组是sp,对应的权限是rw-
一个用户的权限全为否的话,所对应的就是---,用0,1表示就可以表示为000,000转化为八进制就是0。那么同理所属组的权限就可以表示为110,转化为八进制就是6。对于other来讲对应的八进制就是100,转化为八进制就是4。所以最终我们表示一个文件的权限就可以表示为064。
有了上面的经验,所以我们要修改一个文件的权限,就可以chmod 700 sp.txt,其中7对应的是111,0表示000。所以sp.txt文件的权限最终被修改成了rwx --- ---
在这里插入图片描述
如果我想给所属组加上rw,那么就可以chmod 760 sp.txt,其中6表示110。
在这里插入图片描述
如果想给所有人去掉所有权限chmod 000 sp.txt
总结:
修改文件权限的两种方式:

  1. chmod u/g/o/a +/- r/w/x filemane
  2. chmod 八进制 filename

不管是上面的那种该权限的方法,其实本质上都是改的文件的属性。上面我们已经说了,权限=角色+事物属性,我们可不可以修改角色呢?答案是可以的

chown指令

  • 更改拥有者
    例如我们想把sp.txt的拥有者改为root,chown root sp.txt
    在这里插入图片描述
    我们会发现不允许我们修改。原因其实很简单,就好比如我们给别人东西一样,别人也有可能不要,首先得征求别人的意见。但是在liunx中你想给别人东西征求别人意见这样的事无法实现。那怎么办呢?
    答案是强制操作 指令提权sudo chown root sp.txt

chgrp指令

  • 更改所属组
    更改所属组和上面更改拥有者一样,也需要强制操作 指令提权sudo chgrp root sp.txt

拥有者和所属组可不可以同时改呢?答案是可以的
sudo sp:sp sp.txt我们就会发现文件的拥有者和所属组又变成了sp;

拓展: 如果对于一个文件没有读权限,那么用任何工具打开都会看不到内容。权限限制的是人

关于权限的三个问题

  1. 目录权限
    a. 如果我想进入一个目录需要什么权限?r权限
    b.r对目录是什么意思? 无法查看指定目录下的文件信息
    c.w对于目录? 无权在指定目录内部新建文件,删除文件,修改文件名的操作。

  2. 缺省权限
    在这里插入图片描述
    我们新建一个文件会发现它的权限默认是664110110100
    在这里插入图片描述
    我们新创建一个目录,会发现它的默认权限是775

知识点: 普通文件,起始权限:666,目录文件,起始权限:777
但是问题又来了,为什么我们新建的文件起始权限是664,目录是775呢?
原因是在我们liunx系统中存在默认的权限掩码umask
在这里插入图片描述
为什么会有权限掩码?
我们可以修改权限掩码,达到修改Liunx中文件缺省权限的问题
umask0002我们不必关心第一个零,只需关心umask的后三位。002即000 000 010的二进制位
结论:
最终权限(默认)= 起始权限 &(~umask)
比如普通文件的起始权限666-110 110 110,umask是000 000 010。所以最终权限就是664 - 110 110 100
在这里插入图片描述
如何改umask?
umask直接后面跟数字 ,例如 umask 0777(第一个0不写也可以)umask就被改成777了777的二进制表示方式为111 111 111,取反就为000 000 000,任何数与0按位与为0,所以我们现在创建一个新的文件它的权限就为全0了。
在这里插入图片描述
为什么有umask呢?
原因是人的需求是一种变化的,如果你的程序设计的过于死板,缺省权限,目录权限都是固定的样式,一旦碰到有特殊需求的人,就会很不方便。
所以有了umask:首先没有坏处,其次增加了权限新需求的灵活性。

粘滞位

当我们新建一个用户时,系统会自动在/home路径下创建一个用户的家目录,所有家目录的权限都是700,这就意味着,其他普通用户无法进入我的家目录,也不能查看我的家目录下的所有文件,更不能对我的家目录中的文件进行修改、删除,也不能在我的家目录中创建文件。
在这里插入图片描述
但有的时候,我们多个用户想进行文件数据的共享。家目录的特性,导致我们所建立的共享目录不能在任何一个用户的家目录下。那建立在哪里合适呢?答案是,通过超级用户在根目录下建立一个共享文件(根目录的拥有者和所属组都是root,普通用户作为other没有写权限,所以无法在根目录下创建文件),其他普通用户都以其他人的身份去操作这个共享文件。因此,这里还需要把共享文件针对其他人的权限设置为7,以保证普通用户可以进入到这个目录,并且查看该目录下的所有文件、在该目录下创建文件等。

于是,问题来了~~换句话来讲,就是只要用户具有目录的写权限w,就意味着可以在该目录下创建、删除、修改文件。(一个文件能否能够被删除是由它所在的目录决定的,并不由该文件本身所决定)

共享目录对其他人的权限都设置为7,这就意味着所有其他普通用户都可以删除共享目录下的任何文件。换句话说就是:用户A在共享目录下创建了一个文件,而用户B则可以随意的删除A用户所创建的文件。这好像不太科学啊,我张三创建的⼀个文件,凭什么被你李四可以删掉?如何解决这个问题呢?可能会有人想着,那就删除共享目录针对other的写权限w,但是这样我们同时也无法在共享目录下创建文件,就是失去了共享的意义。

为了解决上面的问题,引出了一个新的权限位:粘滞位。 粘滞位的出现,避免了前面提到的互删这种不合理的操作。可以给共享目录针对other角色加上粘滞位权限。

  • chmod o+t 目录名:给共享目录的other加上粘滞位权限

任何用户在设置了粘滞位的目录下

  1. 自己只能删自己的文件,其他人无法删除
  2. root无视
  3. 粘滞位只能给目录设置,普通文件不能设置
  4. t是一种特殊的x

最后其实系统在根目录下已将帮我们建了一个共享的目录:
在这里插入图片描述


如果这篇文章对你有帮助,记得点赞,评论+收藏 ,最后别忘了关注作者,作者将带领你探索更多关于Liunx方面的问题。

相关文章:

【Linux篇】权限管理 - 用户与组权限详解

一. 什么是权限? 首先权限是限制人的。人 真实的人 身份角色 权限 角色 事物属性 二. 认识人–用户 Linux下的用户分为超级用户和普通用户 root :超级管理员,几乎不受权限的约束普通用户 :受权限的约束超级用户的命令提示符是#,普通用…...

【AI系统】昇腾推理引擎 MindIE

昇腾推理引擎 MindIE 本文将介绍华为昇腾推理引擎 MindIE 的详细内容,包括其基本介绍、关键功能特性以及不同组件的详细描述。 本文内容将深入探讨 MindIE 的三个主要组件:MindIE-Service、MindIE-Torch 和 MindIE-RT,以及它们在服务化部署…...

美畅物联丨智能监控,高效运维:视频汇聚平台在储能领域的实践探索

在当今全球能源格局不断变化的大背景下,对清洁能源的需求正以惊人的速度增长。储能项目作为平衡能源供需、提升能源利用效率的关键环节,其规模和复杂度也在不断攀升。在储能项目的运营管理过程中,安全监控、设备运维以及数据管理等方面面临着…...

[SSL: UNSAFE_LEGACY_RENEGOTIATION_DISABLED]

使用requess库访问https网址时,返回 (Caused by SSLError(SSLError(1, [SSL: UNSAFE_LEGACY_RENEGOTIATION_DISABLED] unsafe legacy renegotiation disabled (_ssl.c:1147)))) 原因可能是服务器的认证方式版本太低然后requests抛弃了这种认证方式 参考&#xff…...

12.2深度学习_视觉处理CNN_池化层、卷积知识

3.池化层 3.1 概述 池化层 (Pooling) 降低维度, 缩减模型大小,提高计算速度. 即: 主要对卷积层学习到的特征图进行下采样(SubSampling)处理。 池化层主要有两种: 最大池化 max pooling 最大池化是从每个局部区域中选择最大值作为池化后的值…...

Kafka 常见面试题深度解析

一、基础概念 1. 请简要介绍 Kafka 的基本架构。 Kafka 主要由生产者(Producer)、消费者(Consumer)、代理(Broker)、主题(Topic)和分区(Partition)等组成。…...

LVS默认的工作模式支持哪些负载均衡算法?

LVS默认的工作模式支持哪些负载均衡算法? LVS(Linux Virtual Server)默认支持多种负载均衡算法,这些算法在不同的场景下具有各自的优势。以下是 LVS 默认支持的负载均衡算法及其特点: 1. 轮询调度(Round Robin Sched…...

洛谷P2670扫雷游戏(Java)

三.P2670 [NOIP2015 普及组] 扫雷游戏 题目背景 NOIP2015 普及组 T2 题目描述 扫雷游戏是一款十分经典的单机小游戏。在 n 行 m列的雷区中有一些格子含有地雷(称之为地雷格),其他格子不含地雷(称之为非地雷格)。玩…...

【算法】【优选算法】位运算(下)

目录 一、:⾯试题 01.01.判定字符是否唯⼀1.1 位图1.2 hash思路1.3 暴力枚举 二、268.丢失的数字2.1 位运算,异或2.2 数学求和 三、371.两整数之和四、137.只出现⼀次的数字 II五、⾯试题 17.19.消失的两个数字 一、:⾯试题 01.01.判定字符是…...

前端性能优化篇:防抖和节流

参考:JS问题:项目中如何区分使用防抖或节流? 面试官:什么是防抖和节流?有什么区别?如何实现? 1 为什么要用到防抖和节流 当函数绑定一些持续触发的事件如:浏览器的resize、scroll…...

同为科技(TOWE)柔性定制化PDU插座

随着科技的进步,越来越多的精密电子设备,成为工作生活密不可分的工具。 电子电气设备的用电环境也变得更为复杂,所以安全稳定的供电是电子电气设备的生命线。 插座插排作为电子电气设备最后十米范围内供配电最终核心部分,便捷、安…...

【云原生系列】云计算中的负载均衡是什么,有什么用

云计算里有一个非常重要的概念叫“负载均衡”,如果你经常听到这个词但还不太明白具体是怎么回事,这篇文章可以给你一些思路。负载均衡简单来说就是“分担压力”,确保访问量被合理地分配到各个服务器上,让系统高效且稳定地运行。 …...

工业—使用Flink处理Kafka中的数据_ChangeRecord2

使用 Flink 消费 Kafka 中 ChangeRecord 主题的数据,每隔 1 分钟输出最近 3 分钟的预警次数最多的 设备,将结果存入Redis 中, key 值为 “warning_last3min_everymin_out” , value 值为 “ 窗口结束时间,设备id” &am…...

【Java-数据结构篇】Java 中栈和队列:构建程序逻辑的关键数据结构基石

我的个人主页 我的专栏:Java-数据结构,希望能帮助到大家!!!点赞❤ 收藏❤ 一、引言 1. 栈与队列在编程中的角色定位 栈和队列作为两种基本的数据结构,在众多编程场景中都有着独特的地位。它们为数据的有序…...

工业—使用Flink处理Kafka中的数据_ProduceRecord1

1 、 使用 Flink 消费 Kafka 中 ProduceRecord 主题的数据,统计在已经检验的产品中,各设备每 5 分钟 生产产品总数,将结果存入Redis 中, key 值为 “totalproduce” , value 值为 “ 设备 id ,最近五分钟生…...

探索CSS版心布局:构建现代网页的黄金比例

探索CSS版心布局:构建现代网页的黄金比例 在网页设计中,版心(或称为内容区域)是页面的核心部分,通常用于放置主要内容。使用CSS3的新特性,可以创建更加灵活和响应式的版心布局。本文将详细介绍如何使用CSS…...

华为NPU服务器昇腾Ascend 910B2部署通义千问Qwen2.5——基于mindie镜像一路试错版(三)

文章目录 前言纯模型推理启动服务后面干什么?这可咋整啊?愁死了!总结前言 这是咱这个系列的第三个文章了。 毕竟,这是我好几天摸索出的经验,能帮助各位在几个小时内领会,我觉得也算是我的功劳一件了。 所以,一是希望大家耐心看下去,耐心操作下去;而是恳请各位多多关…...

详解Java数据库编程之JDBC

目录 首先创建一个Java项目 在Maven中央仓库下载mysql connector的jar包 针对MySQL版本5 针对MySQL版本8 下载之后,在IDEA中创建的项目中建立一个lib目录,然后把刚刚下载好的jar包拷贝进去,然后右键刚刚添加的jar包,点击‘添…...

基于MFC实现的人机对战五子棋游戏

基于MFC实现的人机对战五子棋游戏 1、引言 此报告将详细介绍本次课程设计的动机、设计思路及编写技术的详细过程,展现我所学过的C知识以及我通过本次课程设计所学到例如MFC等知识。在文档最后我也会记录我所编写过程遇到的问题以及解决方案。 1.1 背景 五子棋是…...

AIGC 时代的文学:变革与坚守

目录 一.AIGC 带来的文学变革 1.创作方式的改变 2.阅读体验的升级 3.文学市场的重塑 二.文学在 AIGC 时代的坚守 1.人类情感的表达 2.文学的艺术性 3.文学的社会责任 三.AIGC 与人类作家的共生之路 1.相互学习 2.合作创作 3.共同发展 另: 总结 随着人…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

ESP32读取DHT11温湿度数据

芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...