BERT的中文问答系统50
我们将对BERT的中文问答系统48-1代码进行以下改进:
1.增加时间日期和日历功能:在GUI中增加显示当前时间和日期的功能,并提供一个日历组件。
2.增加更多模型类型:增加娱乐、电脑、军事、汽车、植物、科技、历史(朝代、皇帝)、名人、生活(出行、菜品、菜谱、居家),法律、企业、标准等模型的建立、保存和加载。
3.统一使用百度百科:移除360百科的相关代码。
4.完善GUI布局:优化GUI布局,使其更加美观和易用。
以下是改进后的代码:
import os
import json
import jsonlines
import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from transformers import BertModel, BertTokenizer
import tkinter as tk
from tkinter import filedialog, messagebox, ttk
import logging
from difflib import SequenceMatcher
from datetime import datetime
import requests
from bs4 import BeautifulSoup
import calendar# 获取项目根目录
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))# 配置日志
LOGS_DIR = os.path.join(PROJECT_ROOT, 'logs')
os.makedirs(LOGS_DIR, exist_ok=True)def setup_logging():log_file = os.path.join(LOGS_DIR, datetime.now().strftime('%Y-%m-%d_%H-%M-%S_羲和.txt'))logging.basicConfig(level=logging.INFO,format='%(asctime)s - %(levelname)s - %(message)s',handlers=[logging.FileHandler(log_file),logging.StreamHandler()])setup_logging()# 数据集类
class XihuaDataset(Dataset):def __init__(self, file_path, tokenizer, max_length=128):self.tokenizer = tokenizerself.max_length = max_lengthself.data = self.load_data(file_path)def load_data(self, file_path):data = []if file_path.endswith('.jsonl'):with jsonlines.open(file_path) as reader:for i, item in enumerate(reader):try:data.append(item)except jsonlines.jsonlines.InvalidLineError as e:logging.warning(f"跳过无效行 {i + 1}: {e}")elif file_path.endswith('.json'):with open(file_path, 'r') as f:try:data = json.load(f)except json.JSONDecodeError as e:logging.warning(f"跳过无效文件 {file_path}: {e}")return datadef __len__(self):return len(self.data)def __getitem__(self, idx):item = self.data[idx]question = item.get('question', '')human_answer = item.get('human_answers', [''])[0]chatgpt_answer = item.get('chatgpt_answers', [''])[0]try:inputs = self.tokenizer(question, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)human_inputs = self.tokenizer(human_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)chatgpt_inputs = self.tokenizer(chatgpt_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)except Exception as e:logging.warning(f"跳过无效项 {idx}: {e}")return self.__getitem__((idx + 1) % len(self.data))return {'input_ids': inputs['input_ids'].squeeze(),'attention_mask': inputs['attention_mask'].squeeze(),'human_input_ids': human_inputs['input_ids'].squeeze(),'human_attention_mask': human_inputs['attention_mask'].squeeze(),'chatgpt_input_ids': chatgpt_inputs['input_ids'].squeeze(),'chatgpt_attention_mask': chatgpt_inputs['attention_mask'].squeeze(),'human_answer': human_answer,'chatgpt_answer': chatgpt_answer}# 获取数据加载器
def get_data_loader(file_path, tokenizer, batch_size=8, max_length=128):dataset = XihuaDataset(file_path, tokenizer, max_length)return DataLoader(dataset, batch_size=batch_size, shuffle=True)# 模型定义
class XihuaModel(torch.nn.Module):def __init__(self, pretrained_model_name='F:/models/bert-base-chinese'):super(XihuaModel, self).__init__()self.bert = BertModel.from_pretrained(pretrained_model_name)self.classifier = torch.nn.Linear(self.bert.config.hidden_size, 1)def forward(self, input_ids, attention_mask):outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)pooled_output = outputs.pooler_outputlogits = self.classifier(pooled_output)return logits# 训练函数
def train(model, data_loader, optimizer, criterion, device, progress_var=None):model.train()total_loss = 0.0num_batches = len(data_loader)for batch_idx, batch in enumerate(data_loader):try:input_ids = batch['input_ids'].to(device)attention_mask = batch['attention_mask'].to(device)human_input_ids = batch['human_input_ids'].to(device)human_attention_mask = batch['human_attention_mask'].to(device)chatgpt_input_ids = batch['chatgpt_input_ids'].to(device)chatgpt_attention_mask = batch['chatgpt_attention_mask'].to(device)optimizer.zero_grad()human_logits = model(human_input_ids, human_attention_mask)chatgpt_logits = model(chatgpt_input_ids, chatgpt_attention_mask)human_labels = torch.ones(human_logits.size(0), 1).to(device)chatgpt_labels = torch.zeros(chatgpt_logits.size(0), 1相关文章:
BERT的中文问答系统50
我们将对BERT的中文问答系统48-1代码进行以下改进: 1.增加时间日期和日历功能:在GUI中增加显示当前时间和日期的功能,并提供一个日历组件。 2.增加更多模型类型:增加娱乐、电脑、军事、汽车、植物、科技、历史(朝代、皇帝)、名人、生活(出行、菜品、菜谱、居家),法律、…...
深入解析CMake中的find_package命令:用法、特性及版本依赖问题
深入解析CMake中的find_package命令:用法、特性及版本依赖问题 在现代软件开发中,CMake作为一个强大的构建系统,广泛应用于跨平台项目的管理与编译。find_package是CMake中一个核心命令,用于查找并配置项目所依赖的外部库或包。本…...
【OpenDRIVE_Python】使用python脚本输出OpenDRIVE数据中含有隧道tunnel的道路ID和隧道信息
示例代码说明: 遍历OpenDRIVE数据中每条道路Road,若Road中存在隧道tunnel属性,则将该道路ID和包含的所有隧道信息输出到xml文件中。 import xml.dom.minidom from xml.dom.minidom import parse from xml.dom import Node import sys import os # 读取…...
SIP系列五:HTTP(SIP)鉴权
我的音视频/流媒体开源项目(github) SIP系列目录 目录 一、基本认证(basic) 二、摘要认证(digest) 1、摘要认证(digest) RFC 2069 2、摘要认证(digest) RFC 2617 2.1、未定义qop字段或值为"(空) 2.2、qop值为"auth" 2.3、qop值为"auth-int&quo…...
mysql json整数数组去重 整数数组精确查找并删除相应数据
都是针对整数数组 。低版本可用。懒得去查找资料的可以参考下。 json整数数组查找具体数据修改或者删除: update saas_new_tms.eda_logistics_limit set service_attribute json_remove(service_attribute,json_unquote(json_search(replace(service_attribute,…...
【5G】技术组件 Technology Components
5G的目标设置非常高,不仅在数据速率上要求达到20Gbps,在容量提升上要达到1000倍,还要为诸如大规模物联网(IoT, Internet of Things)和关键通信等新服务提供灵活的平台。这些高目标要求5G网络采用多种新技术…...
数据结构4——栈和队列
目录 1.栈 1.1.栈的概念及结构 1.2栈的实现 2.队列 2.1队列的概念及结构 2.2队列的实现 1.栈 1.1.栈的概念及结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一段称为栈顶,另一端称为…...
PHP SM4 加密
PHP SM4 加密 sm4基类 class Sm4 {private $ck [0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,0xc0c7ced5, 0xdce3ea…...
leetcode - 2825. Make String a Subsequence Using Cyclic Increments
Description You are given two 0-indexed strings str1 and str2. In an operation, you select a set of indices in str1, and for each index i in the set, increment str1[i] to the next character cyclically. That is ‘a’ becomes ‘b’, ‘b’ becomes ‘c’, an…...
工业—使用Flink处理Kafka中的数据_ChangeRecord1
使用 Flink 消费 Kafka 中 ChangeRecord 主题的数据,当某设备 30 秒状态连续为 “ 预警 ” ,输出预警 信息。当前预警信息输出后,最近30...
探索嵌入式硬件设计:揭秘智能设备的心脏
目录 引言 嵌入式系统简介 嵌入式硬件设计的组成部分 设计流程 微控制器选择 原理图设计 PCB布局 编程与调试 系统集成与测试 深入理解微控制器 存储器管理 输入/输出接口 通信接口 电源管理 硬件抽象层(HAL) 操作系统(OS&am…...
数据结构-最小生成树
一.最小生成树的定义 从V个顶点的图里生成的一颗树,这颗树有V个顶点是连通的,有V-1条边,并且边的权值和是最小的,而且不能有回路 二.Prim算法 Prim算法又叫加点法,算法比较适合稠密图 每次把边权最小的顶点加入到树中࿰…...
mac启动jmeter
// 设置使用java8,使用21版本会有问题 export JAVA_HOME/Library/Java/JavaVirtualMachines/jdk1.8.0_221.jdk/Contents/Home/ export PATH$JAVA_HOME/bin:$PATH cd /Users/user/software/apache-jmeter-5.1.1 //设置不使用代理 sh jmeter -Jhttp.proxyHost -J…...
spring学习笔记之静态代理和动态代理
在 Spring 开发中,静态代理和动态代理是实现面向切面编程(AOP)的两种常见方式。两者的主要区别在于代理类的生成时间和方式。 静态代理 定义 静态代理是由开发者或工具在编译期明确创建代理类的方式,代理类和目标类在程序运行前就已经存在。 特点 代理类明确存在:需要…...
qemu搭建aarch64
qemu工具搭建aarch64系统 下载准备 下载qemu: https://qemu.weilnetz.de/w64/2022/qemu-w64-setup-20220831.exe 下载固件:https://publishing-ie-linaro-org.s3.amazonaws.com/releases/components/kernel/uefi-linaro/16.02/release/qemu64/QEMU_EFI.fd?Signat…...
delphi IDE 插件DelphiIDEPlugin_SearchProject,用于从项目组中查找项目
delphi IDE 插件DelphiIDEPlugin_SearchProject,用于从项目组中查找项目 安装后在菜单Tools下第一个子菜单项查找项目 delphiIDE插件DelphiIDEPlugin-SearchProject,用于从项目组中查找项目资源-CSDN文库...
【Vue】Scoped、组件间通信、Props检验
目录 Scoped 作用 *原理 组件通信 前置知识 什么是组件通信 为什么需要组件通信 如何进行组件通信 如何辨别两个组件的关系 父子组件通信 父传子 子传父 非父子组件通信 祖先传后代 语法 任意两个组件通信 步骤 Props校验 props是什么 作用 语法 组件的…...
openbmc dbus架构简析(二)
1.说明 以前看内核代码觉得难,是因为内核代码涉及到硬件原理与算法结构和层次递进的代码逻辑,现在的应用层因为业务的复杂与代码和内核的交互接口复杂,也变得有些难度了。 这篇文章是继:openbmc dbus架构简析的第二篇文章。 首先贴出来前篇…...
【二分查找】Leetcode例题
【1】69. x 的平方根 - 力扣(LeetCode) 🍡解题思路:首先想到的是暴力查找,从1开始依次比较x与num*num的大小,然后找出满足num*num<x且(num1)*(num1)>x的num值;再来看看能不能优化一下&…...
gitlab配置调试minio
官方文档 rails console 调试 查看配置Settings.uploads.object_store加载minio clientrequire fog/awsfog_connection Fog::Storage.new(provider: AWS,aws_access_key_id: 你的MINIO_ACCESS_KEY,aws_secret_access_key: 你的MINIO_SECRET_KEY,region: <S3 region>,e…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
