丢垃圾视频时间检测 -- 基于状态机的实现
文章目录
- Overview
- Key Points
- Pseudo-code
Overview
需要考虑的方面
- 状态定义和转换条件
- 时序约束
- 空间约束
- 异常处理
状态机的设计需要考虑的场景:
- 没有人
- 人进入
- 人携带垃圾
- 人离开但垃圾留下
- 垃圾消失
- 异常情况(检测失败、多人多垃圾等)
Key Points
状态设计
- NO_PERSON: 初始状态,场景为空
- PERSON_ONLY: 检测到人
- PERSON_WITH_LITTER: 人和垃圾共同出现
- LITTER_ONLY: 人离开,垃圾留下
状态转移路径
NO_PERSON => PERSON_ONLY => PERSON_WITH_LITTER => LITTER_ONLY
状态转移条件
- NO_PERSON -> PERSON_ONLY: 检测到人
- PERSON_ONLY -> NO_PERSON: 人消失
- PERSON_ONLY -> PERSON_WITH_LITTER: 人靠近垃圾
- PERSON_WITH_LITTER -> LITTER_ONLY: 人离开但垃圾留下
- PERSON_WITH_LITTER -> PERSON_ONLY: 垃圾消失
- LITTER_ONLY -> NO_PERSON: 垃圾消失
约束条件
- 空间约束:人和垃圾的距离阈值
- 时间约束:状态持续时间的上下限
- 检测约束:目标检测的置信度阈值
- 异常处理
- 状态超时重置
- PERSON_WITH_LITTER 的持续时间过长,截断当前帧为结束帧
- 多目标情况处理
- 遍历每个 (Person - Litter) Pair, 找到距离最近的 Pair.
- 状态超时重置
Pseudo-code
定义 状态枚举:NO_PERSON = 0 # 场景中没有人和垃圾PERSON_ONLY = 1 # 只有人PERSON_WITH_LITTER = 2 # 人和垃圾共同出现LITTER_ONLY = 3 # 只有垃圾定义 类 LitteringDetector:属性:current_state: 当前状态frame_start: 事件开始帧frame_end: 事件结束帧state_duration: 当前状态持续时间# 配置参数MAX_DISTANCE: 人和垃圾的最大距离阈值MIN_DURATION: 状态持续最小帧数MAX_DURATION: 状态持续最大帧数方法 初始化():current_state = NO_PERSONframe_start = Noneframe_end = Nonestate_duration = 0方法 检测单帧(frame, frame_id):# 1. 目标检测persons = 检测人物()litters = 检测垃圾()# 2. 状态转移逻辑如果 current_state == NO_PERSON:如果 检测到人:转换到 PERSON_ONLY重置状态持续时间否则如果 current_state == PERSON_ONLY:如果 没有检测到人:转换到 NO_PERSON否则如果 检测到人和垃圾且距离小于阈值:转换到 PERSON_WITH_LITTER记录开始帧 frame_start否则如果 current_state == PERSON_WITH_LITTER:如果 没有检测到人但检测到垃圾:转换到 LITTER_ONLY记录结束帧 frame_end返回检测到丢垃圾事件否则如果 没有检测到垃圾:转换到 PERSON_ONLY否则如果 current_state == LITTER_ONLY:如果 没有检测到垃圾:转换到 NO_PERSON# 3. 更新状态持续时间state_duration += 1# 4. 状态超时检查如果 state_duration > MAX_DURATION:重置到初始状态 NO_PERSON返回 未检测到事件方法 检查空间关系(person, litter):计算人和垃圾的距离返回 距离 < MAX_DISTANCE
相关文章:
丢垃圾视频时间检测 -- 基于状态机的实现
文章目录 OverviewKey PointsPseudo-code Overview 需要考虑的方面 状态定义和转换条件时序约束空间约束异常处理 状态机的设计需要考虑的场景: 没有人人进入人携带垃圾人离开但垃圾留下垃圾消失异常情况(检测失败、多人多垃圾等) Key P…...
【QT】一个简单的串口通信小工具(QSerialPort实现)
目录 0.简介 1.展示结果 1)UI界面: 2)SSCOM(模拟下位机收发): 3)VSPD虚拟串口驱动(连接上位机和下位机的串口): 4)实际收发消息效果及视频演…...
24/12/5 算法笔记<强化学习> doubleDQN,duelingDQN
我们前面了解了DQN网络的一些知识,然而DQN还有一些改进的方法,比如doubleDQN和duelingDQN,我们先来将一下doubleDQN和DQN. 先来对比一下 单一网络 vs. 双重网络 DQN:是一个深度神经网络来估计每个动作的Q值 DDQN:使用两个独立的深度神经网络…...
道可云人工智能元宇宙每日资讯|全国工商联人工智能委员会成立会议在南京举办
道可云元宇宙每日简报(2024年12月5日)讯,今日元宇宙新鲜事有: 全国工商联人工智能委员会成立会议在南京举办 全国工商联人工智能委员会成立会议日前在江苏省南京市举办。中央统战部副部长、全国工商联党组书记沈莹出席会议并讲话…...
MySQL数据库(2)-检查安装与密码重置
1. 数据库下载安装 下载地址:MySQL :: Download MySQL Community Server 2. My.ini配置文件 my.ini 文件通常在MySQL安装过程中自动创建, 并且可以根据需要进行编辑以调整服务器的行为。 3. 配置环境变量 4. 查询版本号 查询版本号:mysql…...
C# 13 中的新增功能
C# 12 中的新增功能C# 11 中的新增功能C# 10 中的新增功能C# 9.0 中的新增功能C# 8.0 中的新增功能C#7.0中有哪些新特性?C#6.0中10大新特性的应用和总结C# 5.0五大新特性 将C#语言版本升级为预览版 C# 13 包括一些新增功能。 可以使用最新的 Visual Stu…...
视频自学笔记
一、视频技术基本框架 二、视频信号分类 2.1信号形式 2.1.1模拟视频 模拟视频是指由连续的模拟信号组成的视频图像,以前所接触的电影、电视都是模拟信号,之所以将它们称为模拟信号,是因为它们模拟了表示声音、图像信息的物理量。摄像机是获…...
easyexcel 导出日期格式化
1.旧版本 在新的版本中formate已经被打上废弃标记。那么不推荐使用这种方式。 2.推荐方式 推荐使用另外一种方式【 Converter 】代码如下,例如需要格式化到毫秒【yyyy-MM-dd HH:mm:ss SSS】级别 创建一个公共Converter import com.alibaba.excel.converters.Conv…...
02-开发环境搭建
02-开发环境搭建 鸿蒙开发环境的准备主要分为以下环节: 注册开发者实名认证创建应用下载安装开发工具新建工程 注册开发者 在华为开发者联盟网站上,注册成为开发者,并完成实名认证。 打开华为开发者联盟官网,点击“注册”进入…...
DBeaver导入csv到数据库
DBeaver的图标是一只小浣熊,查了下Beaver确实是浣熊的意思,看起来还是蛮可爱的。 业务上有需要导入csv到数据库的需求,试用了下,发现挺好用的。有很多属性可以定制。 导入步骤: 1.建表,表字段与待导入cs…...
React第十一节 组件之间通讯之发布订阅模式(自定义发布订阅器)
组件之间通讯常用方案 1、通过props 2、通过context 3、通过发布订阅模式 4、通过Redux 后面会有专栏介绍 什么情况下使用发布订阅模式 a、当我们想要兄弟组件之间通讯,而共同的父组件中又用不到这些数据时候; b、当多个毫无相关的组件之间想要进行数据…...
tcpreplay/tcpdump-重放网络流量/捕获、过滤和分析数据包
tcpdump 是一个网络数据包分析工具,通过捕获并显示网络接口上传输的数据包,帮助用户分析网络流量。 原理:用户态通过 libpcap 库控制数据包捕获,内核态通过网卡驱动获取数据包。 核心功能包括:捕获、过滤和分析数据包…...
ASPICE评估体系概览:对象、范围与参考标准解析
ASPICE(汽车软件过程改进和能力确定)是一个框架,它被广泛应用于汽车行业的软件开发和维护过程的改进。 它类似于软件工程领域的CMMI(能力成熟度模型集成),但专门针对汽车行业,考虑了该行业特有…...
力扣92.反转链表Ⅱ
题目描述 题目链接92. 反转链表 II 给你单链表的头指针 head 和两个整数 left 和 right ,其中 left < right 。请你反转从位置 left 到位置 right 的链表节点,返回 反转后的链表 。 示例 1: 输入:head [1,2,3,4,5], left …...
Java设计模式之适配器模式:深入JDK源码探秘Set类
在Java编程中,Set类作为一个不允许存储重复元素的集合,广泛应用于数据去重、集合运算等场景。然而,你是否曾好奇Set类是如何在底层实现元素唯一性判断的?这背后隐藏的力量正是适配器模式。 适配器模式简介 适配器模式࿰…...
java八股-流量封控系统
文章目录 请求后台管理的频率-流量限制流量限制的业务代码UserFlowRiskControlFilter 短链接中台的流量限制CustomBlockHandler 对指定接口限流UserFlowRiskControlConfigurationSentinelRuleConfig 请求后台管理的频率-流量限制 根据登录用户做出控制,比如 x 秒请…...
【WebRTC】Android SDK使用教学
文章目录 前言PeerConnectionFactoryPeerConnection 前言 最近在学习WebRTC的时候,发现只有JavaScript的API文档,找了很久没有找到Android相关的API文档,所以通过此片文章记录下在Android应用层如何使用WebRTC 本篇文章结合:【W…...
基于单片机的智能晾衣控制系统的设计与实现
摘要:本文是以 AT89C52 单片机为核心来实现智能晾衣控制系统。在这个系统中,雨水检测传感器是用来检测出雨的,而控制器将检测信号的变换,根据变换后的信号自动驱动直流电机将被风干 的棒收回,以便随时控制直流电机来实现晾衣;在光敏模块中检测昼夜的环境,自动控制晾衣杆…...
多人聊天室 NIO模型实现
NIO编程模型 Selector监听客户端不同的zhuangtai不同客户端触发不同的状态后,交由相应的handles处理Selector和对应的处理handles都是在同一线程上实现的 I/O多路复用 在Java中,I/O多路复用是一种技术,它允许单个线程处理多个输入/输出&…...
三、使用 Maven:命令行环境
文章目录 1. 第一节 实验一:根据坐标创建 Maven 工程1.1 Maven 核心概念:坐标1.2 实验操作1.3 Maven核心概念:POM1.4 Maven核心概念:约定的目录结构 2. 实验二:在 Maven 工程中编写代码2.1 主体程序2.2 测试程序 3. 执…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
