快速、高效的数据处理:深入了解 Polars 库
快速、高效的数据处理:深入了解 Polars 库
在数据科学和分析领域,Pandas 一直是 Python 数据处理的标杆。然而,随着数据量的增加,Pandas 在性能上的局限性逐渐显现。为了解决这一问题,越来越多的开发者开始寻找替代方案。Polars 是其中的佼佼者,它以速度快、内存效率高、表达力强等优点受到广泛关注。
本文将介绍 Polars 的核心特点、基本用法,以及与 Pandas 的对比。
什么是 Polars?
Polars 是一个基于 Rust 编写的开源高性能数据框架,专注于快速处理大规模数据集。与 Pandas 不同,Polars 采用 Apache Arrow 作为底层内存格式,并使用列式存储模型,极大提升了数据处理效率。
Polars 支持:
- 并行计算:充分利用多核 CPU 提高性能。
- 懒惰计算:通过延迟执行优化查询计划。
- 表达式 API:高效、清晰地处理复杂的数据操作。
为什么选择 Polars?
-
速度快
Polars 的核心用 Rust 编写,与 Pandas 相比,处理大数据时的速度显著提升。 -
内存效率高
采用 Arrow 的列式存储模型,有效降低内存占用,支持更大的数据集。 -
灵活的 API
Polars 提供两种模式:- 惰性 API:延迟计算,优化查询流程。
- 即时 API:类似 Pandas 的操作风格。
-
跨平台
Polars 支持在 Python、Rust 和其他语言中使用,且与 PyArrow 和 NumPy 高度兼容。
安装 Polars
在 Python 环境中,可以通过 pip 安装 Polars:
pip install polars
如果需要支持懒惰计算,还需安装额外依赖:
pip install polars[lazy]
Polars 的核心数据结构
Polars 的核心数据结构包括:
- DataFrame:类似 Pandas 的 DataFrame,用于表格数据。
- Series:一维数组,类似 Pandas 的 Series。
Polars 的基本用法
1. 创建 DataFrame
import polars as pl# 从字典创建
df = pl.DataFrame({"name": ["Alice", "Bob", "Charlie"],"age": [25, 30, 35],"score": [85, 90, 95]
})print(df)
输出:
shape: (3, 3)
┌─────────┬─────┬───────┐
│ name │ age │ score │
│ --- │ --- │ --- │
│ str │ i64 │ i64 │
├─────────┼─────┼───────┤
│ Alice │ 25 │ 85 │
│ Bob │ 30 │ 90 │
│ Charlie │ 35 │ 95 │
└─────────┴─────┴───────┘
2. 数据选择与过滤
# 选择列
print(df.select("name"))# 条件过滤
filtered = df.filter(pl.col("age") > 28)
print(filtered)
3. 添加和修改列
# 添加新列
df = df.with_columns((pl.col("score") * 2).alias("double_score"))
print(df)# 修改列
df = df.with_columns(pl.col("age").apply(lambda x: x + 1).alias("age"))
print(df)
4. 分组与聚合
# 分组并聚合
grouped = df.groupby("name").agg([pl.col("score").mean().alias("avg_score")
])
print(grouped)
Polars 的惰性计算模式
惰性计算模式通过延迟执行操作来优化性能。例如:
# 使用惰性 DataFrame
lazy_df = df.lazy()# 定义操作
result = lazy_df.filter(pl.col("age") > 28).select(["name", "age"])# 执行计算
print(result.collect())
在实际运行时,Polars 会将多步操作合并为一次高效的查询。
Polars 与 Pandas 的对比
特性 | Polars | Pandas |
---|---|---|
性能 | 快速,支持并行计算 | 单线程处理,性能较低 |
内存使用 | 高效,列式存储 | 效率较低 |
API | 灵活,支持惰性和即时计算 | 即时计算 |
生态 | 新兴库,成长迅速 | 成熟库,生态完善 |
语法风格 | 偏函数式 | 偏面向对象 |
Polars 的应用场景
- 大规模数据分析:处理超过内存容量的数据集。
- ETL 工作流:高效清洗和转换数据。
- 实时查询:需要快速响应的分析场景。
- 机器学习前处理:预处理大数据集时更快。
总结
Polars 是 Pandas 的优秀替代方案,尤其适合处理大规模数据的任务。通过结合 Rust 的性能优势和 Arrow 的高效存储,Polars 在速度和内存效率方面远超 Pandas。如果你的项目面临性能瓶颈或需要处理更大的数据集,不妨试试 Polars!
相关文章:

快速、高效的数据处理:深入了解 Polars 库
快速、高效的数据处理:深入了解 Polars 库 在数据科学和分析领域,Pandas 一直是 Python 数据处理的标杆。然而,随着数据量的增加,Pandas 在性能上的局限性逐渐显现。为了解决这一问题,越来越多的开发者开始寻找替代方…...

【LINUX】Linux 下打包与部署 Java 程序的全流程指南
文章目录 一、Java 程序打包1. 使用 Maven 打包2. 使用 Gradle 打包 二、运行 JAR 文件1. 前台运行2. 后台运行方法 1:使用 & 符号方法 2:使用 nohup 三、关闭运行中的程序1. 查找程序 PID2. 关闭程序 四、使用 Shell 脚本管理程序1. 创建 Shell 脚本…...

Spark 计算总销量
Spark 计算总销量 题目: 某电商平台存储了所有商品的销售数据,平台希望能够找到销量最好的前 N 个商品。通过分析销售记录,帮助平台决策哪些商品需要更多的推广资源。 假设你得到了一个商品销售记录的文本文件 product_id, product_name,…...

矩阵置零
矩阵置零 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地算法。 示例 1: 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]]示例 2ÿ…...

Ai编程cursor + sealos + devBox实现登录以及用户管理增删改查(十三)
一、什么是 Sealos? Sealos 是一款以 Kubernetes 为内核的云操作系统发行版。它以云原生的方式,抛弃了传统的云计算架构,转向以 Kubernetes 为云内核的新架构,使企业能够像使用个人电脑一样简单地使用云。 二、适用场景 业务运…...

深度解读:生产环境中的日志优化与大数据处理实践20241116
🌟 深度解读:生产环境中的日志优化与大数据处理实践 在现代软件开发中,日志是系统调试与问题排查的重要工具。然而,随着应用的复杂化和数据量的增长,传统日志模块在应对复杂嵌套对象、大数据类型时可能面临性能问题和安…...

docker 搭建gitlab,亲测可用
1、Gitlab镜像 查找Gitlab镜像 docker search gitlab 拉取Gitlab镜像 docker pull gitlab/gitlab-ce:latest 2、启动Gitlab容器 # 启动容器 docker run \-itd \-p 9980:80 \-p 9922:22 \-v /home/gitlab/etc:/etc/gitlab \-v /home/gitlab/log:/var/log/gitlab \-v /ho…...

SpringBoot 分层解耦
从没有分层思想到传统 Web 分层,再到 Spring Boot 分层架构 1. 没有分层思想 在最初的项目开发中,很多开发者并没有明确的分层思想,所有逻辑都堆砌在一个类或一个方法中。这样的开发方式通常会导致以下问题: 代码混乱࿱…...

opencv复习
目录 1.core 1.图像变换 1.1 affine仿射变换 1.2 透视变换 2.四元数(旋转) 2.1 轴角转四元数 2.2 旋转矩阵转四元数 2.3 欧拉角转旋转矩阵 2.4 四元数转旋转矩阵 2.5 四元数用eigen用的比较多 2. imgproc. Image Processing 2.1 bilateralF…...

flask-socketio相关总结
flask-socketio是一个为flask应用程序添加的实时双向通信功能的扩展库,有了这个库,就可以在flask应用中应用websocket协议,帮助flask实现低延迟、双向的客户端、服务端通信。客户端通过任何SocketIO官方库,都能与服务器建立长连接…...

2024-12-03OpenCV图片处理基础
OpenCV图片处理基础 OpenCV的视频教学:https://www.bilibili.com/video/BV14P411D7MH 1-OpenCV摄像头读取 OpenCV使用摄像头读取图片帧,点击S保存当前帧到指定文件夹,点击Q关闭窗口,点击其他按钮打印按钮的值 要实现这个功能&…...

本地部署开源趣味艺术画板Paint Board结合内网穿透跨网络多设备在线绘画
文章目录 前言1.关于Paint Board2.本地部署paint-board3.使用Paint Board4.cpolar内网穿透工具安装5.创建远程连接公网地址6.固定Paint Board公网地址 前言 大家好,是不是每次想要在电脑上画画时,都被那些笨重的专业绘图软件搞得头大如斗呢?…...

iOS、android的app备案超简单的公钥、md5获取方法
很多云商的备案平台,推荐下载一些工具来获取公钥和MD5,但是这些工具的跨平台性不是很好,安装也十分麻烦,安装的时候还需要设置国内源等等。 这里,其实有在线工具可以获取APP的公钥和MD5、SHA1值这些信息的。不需要安装…...

SpringCloud 与 SpringBoot版本对应关系,以及maven,jdk
目录 SpringCloud 与 SpringBoot各版本的对应关系 方式一 Learn 方式二 OverView SpringBoot与JDK、maven 容器等对应关系 SpringCloud 与 SpringBoot各版本的对应关系 SpringCloudSpringBootFinchley2.0.xFinchley.SR1Spring Boot >=2.0.3.RELEASE and <=2.0.9RELEAS…...

23种设计模式之装饰模式
目录 1. 简介2. 代码2.1 ABatterCake (抽象组件)2.2 BatterCake (具体组件)2.3 ADecorator (抽象装饰者)2.4 EggDecorator (具体装饰者)2.5 SausageDecorator(具体装饰者…...

HTMLHTML5革命:构建现代网页的终极指南 - 2. HTMLHTML5H5的区别
HTML&HTML5革命:构建现代网页的终极指南 2. HTML&HTML5&H5的区别 大家好,我是莫离老师 在上一节课,我们了解了HTML的重要性和前端开发的核心概念。 今天,我们将深入探讨 HTML、HTML5 和 H5 的区别,并重点…...

Django之ORM表操作
ORM表操作 1.ORM单表操作 首先想操作表的增删改查,需要先导入这个表,以之前创建的UserInfo表为例,在app下的views.py中导入 from app import modelsdef query(request):new_obj models.UserInfo(id1,name北北,bday2019-09-27,checked1,)new_obj.save()return Htt…...

python下几个淘宝、天猫、京东爬虫实例
以下是使用Python编写的针对淘宝、天猫、京东详情页的爬虫实例。请注意,这些实例仅供参考,实际使用时可能需要根据网站结构的变化进行调整,并且需要遵守各平台的爬虫协议和法律法规。 淘宝详情页爬虫实例 环境准备: Python 3.xSe…...

级联树结构TreeSelect和上级反查
接口返回结构 前端展示格式 前端组件 <template><div ><el-scrollbar height"70vh"><el-tree :data"deptOptions" :props"{ label: label, children: children }" :expand-on-click-node"false":filter-node-me…...

gradle下载慢解决方案2024 /12 /1android studio (Windows环境)
gradle下载慢解决方案2024 /12 /1 默认环境配置好了,环境配置和程序安装请出门右转 打开软件,点击右上角设置,找到如下设置页 选择本地安装并制定好你已经安装好的 gradle 应用保存即可 全局插件环境配置(新版本可以直接在设置中添加了) 找对应位置添加国内源并把前面的内置源…...

Python+OpenCV系列:GRAY BGR HSV
以下是 GRAY、BGR 和 HSV 三种色彩空间的对比,涵盖了它们的定义、特点、应用场景和优缺点: 1. 定义 GRAY: 灰度图像仅包含亮度信息,每个像素用一个值(通常在0到255之间)表示亮度(黑到白&#x…...

丢垃圾视频时间检测 -- 基于状态机的实现
文章目录 OverviewKey PointsPseudo-code Overview 需要考虑的方面 状态定义和转换条件时序约束空间约束异常处理 状态机的设计需要考虑的场景: 没有人人进入人携带垃圾人离开但垃圾留下垃圾消失异常情况(检测失败、多人多垃圾等) Key P…...

【QT】一个简单的串口通信小工具(QSerialPort实现)
目录 0.简介 1.展示结果 1)UI界面: 2)SSCOM(模拟下位机收发): 3)VSPD虚拟串口驱动(连接上位机和下位机的串口): 4)实际收发消息效果及视频演…...

24/12/5 算法笔记<强化学习> doubleDQN,duelingDQN
我们前面了解了DQN网络的一些知识,然而DQN还有一些改进的方法,比如doubleDQN和duelingDQN,我们先来将一下doubleDQN和DQN. 先来对比一下 单一网络 vs. 双重网络 DQN:是一个深度神经网络来估计每个动作的Q值 DDQN:使用两个独立的深度神经网络…...

道可云人工智能元宇宙每日资讯|全国工商联人工智能委员会成立会议在南京举办
道可云元宇宙每日简报(2024年12月5日)讯,今日元宇宙新鲜事有: 全国工商联人工智能委员会成立会议在南京举办 全国工商联人工智能委员会成立会议日前在江苏省南京市举办。中央统战部副部长、全国工商联党组书记沈莹出席会议并讲话…...

MySQL数据库(2)-检查安装与密码重置
1. 数据库下载安装 下载地址:MySQL :: Download MySQL Community Server 2. My.ini配置文件 my.ini 文件通常在MySQL安装过程中自动创建, 并且可以根据需要进行编辑以调整服务器的行为。 3. 配置环境变量 4. 查询版本号 查询版本号:mysql…...

C# 13 中的新增功能
C# 12 中的新增功能C# 11 中的新增功能C# 10 中的新增功能C# 9.0 中的新增功能C# 8.0 中的新增功能C#7.0中有哪些新特性?C#6.0中10大新特性的应用和总结C# 5.0五大新特性 将C#语言版本升级为预览版 C# 13 包括一些新增功能。 可以使用最新的 Visual Stu…...

视频自学笔记
一、视频技术基本框架 二、视频信号分类 2.1信号形式 2.1.1模拟视频 模拟视频是指由连续的模拟信号组成的视频图像,以前所接触的电影、电视都是模拟信号,之所以将它们称为模拟信号,是因为它们模拟了表示声音、图像信息的物理量。摄像机是获…...

easyexcel 导出日期格式化
1.旧版本 在新的版本中formate已经被打上废弃标记。那么不推荐使用这种方式。 2.推荐方式 推荐使用另外一种方式【 Converter 】代码如下,例如需要格式化到毫秒【yyyy-MM-dd HH:mm:ss SSS】级别 创建一个公共Converter import com.alibaba.excel.converters.Conv…...

02-开发环境搭建
02-开发环境搭建 鸿蒙开发环境的准备主要分为以下环节: 注册开发者实名认证创建应用下载安装开发工具新建工程 注册开发者 在华为开发者联盟网站上,注册成为开发者,并完成实名认证。 打开华为开发者联盟官网,点击“注册”进入…...