当前位置: 首页 > news >正文

CV(2)-插值和卷积

前言

仅记录学习过程,有问题欢迎讨论

看看年前可以学到哪。

频率:

灰度值变化程度的指标,是灰度再平面上的梯度幅值:

幅值:

是在一个周期内,交流电瞬时出现的最大绝对值,也是一个正弦波,波峰到波谷的距离的一半。

图像的取样和量化:

  • 取样:就是要用多少点来描述一幅图像,取样结果质量的高低就是用图像的分辨率来衡量的
  • 量化:是指要使用多大范围的数值来表示图像采样之后的一个点。
  • 数字化坐标值称为取样,数字化幅度值称为量化

上采样与下采样:

  • 缩小图像(或称为下采样或降采样)的主要目的:
    • 1、使得图像符合显示区域的大小;
    • 2、生成对应图像的缩略图。
  • 放大图像(或称为上采样或图像插值)的主要目的是放大原图像,从而可以显示在更高分辨率的显示设备上。

插值方法:

  • 最邻近插值:和哪个像素点近就插入其附近,等比例插入像素点的位置

  • 双线性插值(常用):在两个方向上做线性插值(通过4个像素点等比例算出新的像素点位置,几何中心重合!)

  • 双线性差值法的计算比最邻近插值法复杂,计算量较大,但没有灰度不连续的缺点,图像看起来更光滑。

直方图
反映了图像中的灰度分布规律(0-255)。它描述每个灰度级具有的像素个数,但不包含这些像素在图像中的位置信息。
图像直方图不关心像素所处的空间位置,因此不受图像旋转和平移变化的影响,可以作为图像的特征。直方图均衡化就是用一定的算法使直方图大致平和的方法(过亮过暗,套用公式计算新的映射像素点位置)

卷积:

  • 就是特征提取,在CNN是通过大量数据训练得来的,有平滑效果,对位相乘再相加然后移动;
  • 可以通过padding来计算边缘值,防止信息丢失

  • 可以有多个卷积核,提取不同的特征;

  • 卷积核的数量就是输出的通道数,卷积核的通道数就是输入的通道数 (对于输入的每一个通道,都需要有对应的卷积核通道来进行计算,可以参考下图)
    在这里插入图片描述

卷积-3种填充模式

  1. full:卷积核相交图像开始计算,卷积结果尺寸小于原图像
  2. valid:卷积核边缘与图像边缘对齐,卷积结果尺寸小于原图像
  3. same:卷积结果尺寸等于原图像(常用,步长s=1)

插值和直方图的实现

"""
1.实现最邻近插值
2,实现双线性插值
3,证明几何中心对称系数
4.实现图像均衡化"""
import cv2
import matplotlib.pyplot as plt
import numpy as np# 1.实现最邻近插值
def nearest_interpolation(img, dst_h, dst_w):src_h, src_w, _ = img.shapet_x = dst_w / src_wt_y = dst_h / src_hdst_img = np.zeros((dst_h, dst_w, 3), dtype=np.uint8)for i in range(dst_h):for j in range(dst_w):x = int(j / t_x)y = int(i / t_y)dst_img[i, j] = img[y, x]return dst_img# 2.实现双线性插值
def bilinear_interpolation(img, dst_h, dst_w):src_h, src_w, _ = img.shapet_x = dst_w / src_wt_y = dst_h / src_hdst_img = np.zeros((dst_h, dst_w, 3), dtype=np.uint8)for i in range(dst_h):for j in range(dst_w):x = j / t_xy = i / t_yx1 = int(x)y1 = int(y)x2 = min(x1 + 1, src_w - 1)  # 防止超过原图的宽 所以有这个min的行为y2 = min(y1 + 1, src_h - 1)# 公式dst_img[i, j] = (1 - (x - x1)) * (1 - (y - y1)) * img[y1, x1] + (1 - (x - x1)) * (y - y1) * img[y2, x1] + (x - x1) * (1 - (y - y1)) * img[y1, x2] + (x - x1) * (y - y1) * img[y2, x2]return dst_img# 3,证明几何中心对称系数为1/2
"""
设中点坐标为a = (x1+x2)/2, b = (y1+y2)/2
对x有 2a = (x1+x2) ,则 x2 = 2a - x1
对y有 2b = (y1+y2) ,则 y2 = 2b - y1
所以对称点坐标为 (2a - x1, 2b - y1)
因为中点,有 x2-x1 = 2(a-x1) ,得出x2和x1的差值是x1到a距离的两倍,并且方向是相反的
又因为是关于O中心对称,在x坐标系中,坐标系的变化系数就是1/2,
同理在y坐标系中,坐标系的变化系数也是1/2。"""# 4.实现图像均衡化
def equalization(img):# 灰度化# grey_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 多个通道每个通道都需要均衡化 然后合并b, g, r = cv2.split(img)eqb_img = cv2.equalizeHist(b)eqg_img = cv2.equalizeHist(g)eqr_img = cv2.equalizeHist(r)eqz_img = cv2.merge((eqb_img, eqg_img, eqr_img))return eqz_imgif __name__ == '__main__':img = cv2.imread("test.png")"""1.实现最邻近插值near_img = nearest_interpolation(img,300, 300)cv2.imshow("near_img",near_img)cv2.waitKey(0)""""""2.实现双线性插值near_img = bilinear_interpolation(img, 300, 300)cv2.imshow("bili_img", near_img)cv2.waitKey(0)"""# 4.实现图像均衡化dst_img = equalization(img)cv2.imshow("dst_img", dst_img)cv2.waitKey(0)

相关文章:

CV(2)-插值和卷积

前言 仅记录学习过程,有问题欢迎讨论 看看年前可以学到哪。 频率: 灰度值变化程度的指标,是灰度再平面上的梯度幅值: 幅值: 是在一个周期内,交流电瞬时出现的最大绝对值,也是一个正弦波,波…...

学习threejs,通过设置纹理属性来修改纹理贴图的位置和大小

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️Texture 贴图 二、&#x1…...

fastadmin 后台插件制作方法

目录 一:开发流程 二:开发过程 (一):后台功能开发 (二):功能打包到插件目录 (三):打包插件 (四):安装插件…...

9. 一分钟读懂“策略模式”

9.1 模式介绍 策略模式是一种行为型设计模式,用于在运行时灵活切换对象的行为或算法,它将算法封装为独立的类,使得它们可以互相替换,而不会影响使用这些算法的客户端代码。 策略模式的核心思想是:定义一系列可互换的算…...

65页PDF | 企业IT信息化战略规划(限免下载)

一、前言 这份报告是企业IT信息化战略规划,报告详细阐述了企业在面对新兴技术成熟和行业竞争加剧的背景下,如何通过三个阶段的IT战略规划(IT 1.0基础建设、IT 2.0运营效率、IT 3.0持续发展),系统地构建IT管理架构、应…...

Android 单元测试断言校验方法 org.junit.Assert

判断布尔值 assertTrue assertFalse 判断对象非空 assertNull(object); 案例: PersistableBundle result Util.getCarrierConfig(mockContext, subId);assertNull(result); 判断是否相等 assertEquals("mocked_string", result.toString()); package or…...

亚马逊云(AWS)使用root用户登录

最近在AWS新开了服务器(EC2),用于学习,遇到一个问题就是默认是用ec2-user用户登录,也需要密钥对。 既然是学习用的服务器,还是想直接用root登录,下面开始修改: 操作系统是&#xff1…...

用点云信息来进行监督目标检测

🍑个人主页:Jupiter. 🚀 所属专栏:传知代码 欢迎大家点赞收藏评论😊 目录 概述问题分析Making Lift-splat work well is hard深度不准确深度过拟合不准确的BEV语义 模型总体框架显性深度监督 深度细化模块演示效果核心…...

Navicat连接服务器MySQL

Navicat连接服务器MySQL 1. Navicat连接服务器MySQL2. 如何查看MySQL用户名和密码3. 修改MySQL登录密码4. 安装MySQL(Centos7)遇到错误和问题 1. error 1045 (28000): access denied for user ‘root’‘localhost’ (using password:yes) 1. Navicat连接服务器MySQL 选择数据…...

FastAPI 响应状态码:管理和自定义 HTTP Status Code

FastAPI 响应状态码:管理和自定义 HTTP Status Code 本文介绍了如何在 FastAPI 中声明、使用和修改 HTTP 状态码,涵盖了常见的 HTTP 状态码分类,如信息响应(1xx)、成功状态(2xx)、客户端错误&a…...

【人工智能数学基础篇】线性代数基础学习:深入解读矩阵及其运算

矩阵及其运算:人工智能入门数学基础的深入解读 引言 线性代数是人工智能(AI)和机器学习的数学基础,而矩阵作为其核心概念之一,承担着数据表示、变换和运算的重任。矩阵不仅在数据科学中广泛应用,更是神经网…...

RNACOS:用Rust实现的Nacos服务

RNACOS是一个使用Rust语言开发的Nacos服务实现,它继承了Nacos的所有核心功能,并在此基础上进行了优化和改进。作为一个轻量级、快速、稳定且高性能的服务,RNACOS不仅包含了注册中心、配置中心和Web管理控制台的功能,还支持单机和集…...

JAVA |日常开发中JSTL标签库详解

JAVA &#xff5c;日常开发中JSTL标签库详解 前言一、JSTL 概述1.1 定义1.2 优势 二、JSTL 核心标签库2.1 导入 JSTL 库2.2 <c:out>标签 - 输出数据2.3 <c:if>标签 - 条件判断2.4 <c:choose>、<c:when>和<c:otherwise>标签 - 多条件选择 结束语优…...

Apache HttpClient 4和5访问没有有效证书的HTTPS

本文将展示如何配置Apache HttpClient 4和5以支持“接受所有”SSL。 目标很简单——访问没有有效证书的HTTPS URL。 SSLPeerUnverifiedException 在未配置SSL的情况下&#xff0c;尝试消费一个HTTPS URL时会遇到以下测试失败&#xff1a; Test void whenHttpsUrlIsConsumed…...

Lighthouse(灯塔)—— Chrome 浏览器性能测试工具

1.认识 Lighthouse Lighthouse 是 Google 开发的一款开源性能测试工具&#xff0c;用于分析网页或 Web 应用的性能、可访问性、最佳实践、安全性以及 SEO 等关键指标。开发人员可以通过 Lighthouse 快速了解网页的性能瓶颈&#xff0c;并基于优化建议进行改进。 核心功能&…...

扫二维码进小程序的指定页面

草料二维码解码器 微信开发者工具 获取二维码解码的参数->是否登陆->跳转 options.q onLoad: function (options) {// console.log("options",options.q)if (options && options.q) {// 解码二维码携带的链接信息let qrUrl decodeURIComponent(optio…...

如何用IntelliJ IDEA开发Android Studio用自定义Gradle插件

博主所用软件版本为&#xff1a; IntelliJ IDEA 2024.1.4 (Community Edition) Android Studio Ladybug Feature Drop | 2024.2.2 Beta 1 1、制作gradle插件&#xff08;IntelliJ IDEA 2024.1.4&#xff09; 新建groovy工程&#xff0c;File–>New–>Project… 右键点…...

YOLOv8实战道路裂缝缺陷识别

本文采用YOLOv8作为核心算法框架&#xff0c;结合PyQt5构建用户界面&#xff0c;使用Python3进行开发。YOLOv8以其高效的实时检测能力&#xff0c;在多个目标检测任务中展现出卓越性能。本研究针对道路裂缝数据集进行训练和优化&#xff0c;该数据集包含丰富的道路裂缝图像样本…...

RPC一分钟

概述 微服务治理&#xff1a;Springcloud、Dubbo服务通信&#xff1a;Grpc、Trift Dubbo 参考 Dubbo核心功能&#xff0c;主要提供了&#xff1a;远程方法调用、智能容错和负载均衡、提供服务自动注册、自动发现等高效服务治理功能。 Dubbo协议Dubbo支持dubbo、rmi、http、…...

Elasticsearch ILM 故障排除:常见问题及修复

作者&#xff1a;来自 Elastic Stef Nestor 大家好&#xff01;我们的 Elasticsearch 团队正在不断改进我们的索引生命周期管理 (index Lifecycle Management - ILM) 功能。当我第一次加入 Elastic Support 时&#xff0c;我通过我们的使用 ILM 实现自动滚动教程快速上手。在帮…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...