Thonny IDE + MicroPython + ESP32 + GY-302 测量环境中的光照强度
GY-302是一款基于BH1750FVI光照强度传感器芯片的模块。该模块能够直接测量出环境中的光照强度,并将光照强度转换为数字信号输出。其具体参数如下表所示。
| 参数名称 | 参数特性 |
| 测量范围 | 0-65535 LX |
| 测量精度 | 在环境光下误差小于±20%,能够自动忽略50/60Hz的闪烁光源 |
| 分辨率和测量时间 | 从低分辨率快速模式(4 LX分辨率,最快16ms测量时间) 到高分辨率模式(0.5LX分辨率,最慢120ms测量时间) |
| 通信方式 | 标准IIC通信,最大通信速率为400kHz |
元件:
- GY-302光照强度模块

- ESP32 DEVKIT_C开发板


- 杜邦线
- USB Type-C
接线:
| ESP32 DEVKIT_C | GY-302 |
| VIN或3V3 | VCC |
| GND | GND |
| D18 | SCL |
| D19 | SDA |
注:GY-302中的ADDR引脚悬空不接;GY-302中的SCL和SDA引脚也可以连接到ESP32中的其他硬/软件IIC引脚,只需在代码中做出相应的配置
代码:
from machine import Pin
import timegy302_addr = 0x23 # 光线传感器I2C地址from machine import I2C
i2c = I2C(0, freq = 1_000_000) #初始化IIC0,使用默认引脚“SCL=18、SDA=19”,传输速度:100 Kbps
#i2c = I2C(1, freq = 1000000) #初始化IIC1,使用默认引脚“SCL=25、SDA=26”,传输速度:100 Kbps#from machine import SoftI2C
#i2c = SoftI2C(scl=Pin(5), sda=Pin(4), freq=1000000) #初始化软件IIC,SCL=5、SDA=4,传输速度:100 Kbps
#i2c = SoftI2C(scl=Pin(33), sda=Pin(32), freq=4_000_000) #初始化软件IIC,SCL=33、SDA=32,传输速度:400 Kbps#print(hex(i2c.scan()[0])) # 打印器件I2C地址def gy_302_Init(): i2c.writeto(gy302_addr, chr(0x01)) # 发送上电命令 #i2c.writeto(gy302_addr, chr(0x07)) # 发送复位命令#i2c.writeto(gy302_addr, chr(0x10)) # 发送高分辨率连续测量命令 分辨率:1Lx 测量时间:120msi2c.writeto(gy302_addr, chr(0x11)) # 发送高分辨率连续测量命令2 分辨率:0.5Lx 测量时间:120ms#i2c.writeto(gy302_addr, chr(0x13)) # 发送低分辨率连续测量命令 分辨率:4Lx 测量时间:16msdef gy_302():gy = i2c.readfrom(gy302_addr, 2) # 从gy302_addr地址设备读取2位数据gy302 = float(gy[0] << 8 | gy[1]) / 1.2 # 左移,可以理解为 gy[0]*0xff return gy302gy_302_Init()while True:#print("光照值 = %d Lx" %round(gy_302()))print("光照值 = ", gy_302()," Lx")time.sleep(1)
现象:

相关文章:
Thonny IDE + MicroPython + ESP32 + GY-302 测量环境中的光照强度
GY-302是一款基于BH1750FVI光照强度传感器芯片的模块。该模块能够直接测量出环境中的光照强度,并将光照强度转换为数字信号输出。其具体参数如下表所示。 参数名称 参数特性 测量范围 0-65535 LX 测量精度 在环境光下误差小于20%,能够自动忽略50/60…...
小程序-基于java+SpringBoot+Vue的智慧校园管理系统设计与实现
项目运行 1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境:IDEA,Eclipse,Myeclipse都可以。推荐IDEA; 3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可 4.硬件环境:…...
基于Java+Swing+Mysql的网络聊天室
博主介绍: 大家好,本人精通Java、Python、C#、C、C编程语言,同时也熟练掌握微信小程序、Php和Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…...
javascript 的map()和join()
map()和join() 1. map()方法 定义 map()是JavaScript数组的一个高阶函数。它创建一个新数组,这个新数组中的元素是原始数组中的元素经过某种函数处理后的结果。 语法 array.map(callback(element[, index[, array]])[, thisArg])其中callback是一个函数࿰…...
深入理解 PyTorch 自动微分机制与自定义 torch.autograd.Function
文章目录 前言一、pytorch使用现有的自动微分机制二、torch.autograd.Function中的ctx解读1、forward 方法中的 ctx2、backward 方法中的 ctx3、小结 三、pytorch自定义自动微分函数(torch.autograd.Function)1、torch.autograd.Function计算前向与后向传…...
《C++ 赋能 K-Means 聚类算法:开启智能数据分类之旅》
在当今数字化浪潮汹涌澎湃的时代,人工智能无疑是引领科技变革的核心驱动力之一。而在人工智能的广袤天地中,数据分类与聚类作为挖掘数据内在价值、揭示数据潜在规律的关键技术手段,正发挥着前所未有的重要作用。K-Means 聚类算法,…...
对 JavaScript 说“不”
JavaScript编程语言历史悠久,但它是在 1995 年大约一周内创建的。 它最初被称为 LiveScript,但后来更名为 JavaScript,以赶上 Java 的潮流,尽管它与 Java 毫无关系。 它很快就变得非常流行,推动了 Web 应用程序革命&…...
spring下的beanutils.copyProperties实现深拷贝
spring下的beanutils.copyProperties方法是深拷贝还是浅拷贝?可以实现深拷贝吗? 答案:浅拷贝。 一、浅拷贝深拷贝的理解 简单说拷贝就是将一个类中的属性拷贝到另一个中,对于BeanUtils.copyProperties来说,你必须保…...
蓝桥杯二分题
P1083 [NOIP2012 提高组] 借教室 题目描述 在大学期间,经常需要租借教室。大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室。教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样。 面对海量租…...
3D数字化革新,探索博物馆的正确打开新方式!
3D数字化的发展,让博物馆也焕发新机,比如江苏省的“云上博物”,汇聚江苏全省博物馆展陈资源,采取线上展示和线下体验两种方式进行呈现的数字展览项目。在线上,用户可以通过H5或小程序进入“云上博物”数字展览空间&…...
工业检测基础-工业相机选型及应用场景
以下是一些常见的工业检测相机种类、检测原理、应用场景及选型依据: 2D相机 检测原理:基于二维图像捕获,通过分析图像的明暗、纹理、颜色等信息来检测物体的特征和缺陷.应用场景:广泛应用于平面工件的外观检测,如检测…...
通过 FRP 实现 P2P 通信:控制端与被控制端配置指南
本文介绍了如何通过 FRP 实现 P2P 通信。FRP(Fast Reverse Proxy)是一款高效的内网穿透工具,能够帮助用户突破 NAT 和防火墙的限制,将内网服务暴露到公网。通过 P2P 通信方式,FRP 提供了更加高效、低延迟的网络传输方式…...
即时通信系统项目总览
聊天室服务端项目总体介绍 本项目是一个全栈的即时通信系统, 前端使用QT实现聊天客户端, 后端采⽤微服务框架设计, 由网关子服务统一接收客户端的请求, 再分发到不同的子服务上处理并将结果返回给网关, 网关再将响应转发给客户端 拆分的微服务包含: 网关服务器&…...
QT获取tableview选中的行和列的值
查询数据库数据放入tableview(tableView_database)后 QSqlQueryModel* sql_model new QSqlQueryModel(this);sql_model->setQuery("select * from dxxxb_move_lot_tab");sql_model->setHeaderData(0, Qt::Horizontal, tr("id&quo…...
GDPU 人工智能 期末复习
1、python基础 2、回归、KNN、K-Means、搜索方法思想及算法实现步骤 3、知识表示基本概念 4、状态空间的相关概念、表示方法及应用 5、图搜索策略及应用 6、问题归约概念、与或图搜索、博弈树搜索与剪枝 7、决策树、贝叶斯决策算法及其应用 8、神经网络与深度学习基本概念 一、…...
编程之路,从0开始:补充篇
Hello大家好!很高兴和大家又见面啦!给生活添点passion,开始今天的编程之路! 我的博客:<但凡. 我的专栏:《编程之路》、《题海拾贝》、《数据结构与算法之美》 欢迎点赞,关注! 这篇…...
使用缓存提升Web应用性能:从新手到高手的实践指南
引言 在现代Web开发中,性能优化是确保用户体验和系统稳定性的关键。使用缓存是提升网站性能的有效手段之一,可以显著减少数据库访问和计算开销。根据“网站优化第一定律”,缓存可以提升网站的响应速度,减少延迟,从而改…...
【数字电路与逻辑设计】实验一 序列检测器
文章总览:YuanDaiMa2048博客文章总览 【数字电路与逻辑设计】实验一 序列检测器 一、实验内容二、设计过程(一)作出状态图或状态表(二)状态化简(三)状态编码 三、源代码(一ÿ…...
运动模糊效果
1、运动模糊效果 运动模糊效果,是一种用于 模拟真实世界中快速移动物体产生的模糊现象 的图像处理技术,当一个物体以较高速度移动时,由于人眼或摄像机的曝光时间过长,该物体会在图像中留下模糊的运动轨迹。这种效果游戏、动画、电…...
养老护理员培训考试题库;免费题库;大风车题库
下载链接:大风车题库-文件 大风车题库网站:大风车题库 大风车excel(试题转excel):大风车excel...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...
深入理解 React 样式方案
React 的样式方案较多,在应用开发初期,开发者需要根据项目业务具体情况选择对应样式方案。React 样式方案主要有: 1. 内联样式 2. module css 3. css in js 4. tailwind css 这些方案中,均有各自的优势和缺点。 1. 方案优劣势 1. 内联样式: 简单直观,适合动态样式和…...
Copilot for Xcode (iOS的 AI辅助编程)
Copilot for Xcode 简介Copilot下载与安装 体验环境要求下载最新的安装包安装登录系统权限设置 AI辅助编程生成注释代码补全简单需求代码生成辅助编程行间代码生成注释联想 代码生成 总结 简介 尝试使用了Copilot,它能根据上下文补全代码,快速生成常用…...
Ray框架:分布式AI训练与调参实践
Ray框架:分布式AI训练与调参实践 系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu 文章目录 Ray框架:分布式AI训练与调参实践摘要引言框架架构解析1. 核心组件设计2. 关键技术实现2.1 动态资源调度2.2 …...
iOS 项目怎么构建稳定性保障机制?一次系统性防错经验分享(含 KeyMob 工具应用)
崩溃、内存飙升、后台任务未释放、页面卡顿、日志丢失——稳定性问题,不一定会立刻崩,但一旦积累,就是“上线后救不回来的代价”。 稳定性保障不是某个工具的功能,而是一套贯穿开发、测试、上线全流程的“观测分析防范”机制。 …...
Docker环境下安装 Elasticsearch + IK 分词器 + Pinyin插件 + Kibana(适配7.10.1)
做RAG自己打算使用esmilvus自己开发一个,安装时好像网上没有比较新的安装方法,然后找了个旧的方法对应试试: 🚀 本文将手把手教你在 Docker 环境中部署 Elasticsearch 7.10.1 IK分词器 拼音插件 Kibana,适配中文搜索…...
