基于 RNN(GRU, LSTM)+CNN 的红点位置检测(pytorch)
文章目录
- 1 项目背景
- 2 数据集
- 3 思路
- 4 实验结果
- 5 代码
1 项目背景
需要在图片精确识别三跟红线所在的位置,并输出这三个像素的位置。
其中,每跟红线占据不止一个像素,并且像素颜色也并不是饱和度和亮度极高的红黑配色,每个红线放大后可能是这样的。
而我们的目标是精确输出每个红点的位置,需要精确到像素。也就是说,对于每根红线,模型需要输出橙色箭头所指的像素而不是蓝色箭头所指的像素的位置。
之前尝试过纯 RNN 的实验,也试过在 RNN 前用 CNN,给数据带上卷积的信息。在图片长度为1080、低噪声环境时,对比实验的结果如下:
实验 | loss | 完全准确的点 |
---|---|---|
GRU | 129.6641 | 1762.0/9000 (20%) |
LSTM | 249.2053 | 1267.0/9000 (14%) |
CNN+GRU | 1419.5781 | 601.0/9000 (7%) |
CNN+LSTM | 1166.4599 | 762.0/9000 (8%) |
对的,这个方法甚至起到反效果了。问了做过类似尝试的同事,他表示效果其实跟直接使用 RNN 区别不大。
2 数据集
还是之前那个代码合成的数据集数据集,每个数据集规模在15000张图片左右,在没有加入噪音的情况下,每个样本预览如图所示:
加入噪音后,每个样本的预览如下图所示:
图中黑色部分包含比较弱的噪声,并非完全为黑色。
数据集包含两个文件,一个是文件夹,里面包含了jpg压缩的图像数据:
另一个是csv文件,里面包含了每个图像的名字以及3根红线所在的像素的位置。
3 思路
之前 CNN+RNN 的思路是把 CNN 作为一个特征提取器,RNN 作为决策模型。这次主要是想看看直接用 CNN 做决策会比 RNN 强多少,因为其实 CNN 在这类任务上的优势应该会大很多。也就是说把RNN当作一个特征提取器处理图片数据,再用CNN找到这三个点的位置。按照这个思路,RNN+CNN 的处理流程如下:
然后再在模型上加一点Attention:
4 实验结果
实验 | train loss | val loss | test loss | test 完全准确样本 | 点1平均偏移量 | 点2平均偏移量 | 点3平均偏移量 |
---|---|---|---|---|---|---|---|
GRU | 17.1150 | 16.2752 | 233.5694 | 536.0/4500 (12%) | 3.3181 | 3.0701 | 3.3957 |
LSTM | 378.7690 | 47.6191 | 367.7041 | 499.0/4500 (11%) | 4.2166 | 3.6437 | 4.0777 |
CNN | 6.6049 | 13.6372 | 231.4501 | 650.0/4500 (14%) | 2.1816 | 3.0884 | 3.9680 |
CNN+RNN | 5.3883 | 6.6833 | 76.0979 | 821.0/4500 (18%) | 1.8977 | 2.5229 | 1.8854 |
RNN+CNN | 2.6558 | 1.7714 | 28.4280 | 1318.0/4500 (29%) | 1.4926 | 1.3679 | 1.5234 |
RNN+CNN+Attention | 6.5938 | 42.4060 | 41.9453 | 1264.0/4500 (28%) | 1.5860 | 1.5557 | 1.8804 |
Multi-Head Attention + RNN | 174.5019 | 18.1041 | 149.0297 | 645.0/4500 (14%) | 2.6598 | 3.2243 | 2.4309 |
GRU那个妥妥过拟合,CNN 做决策效果确实暴打之前的 RNN,只能说卷积还是适合图像类的任务,RNN 这种针对序列信息的可能效果还是有限。画出前6个模型预测中三个点的偏移量,可以看出 RNN+CNN 模型的预测结果的偏差大多集中于0和1这块:
关于多头注意力机制在 RNN 中的效果以及注意力机制在 CNN 中的效果,我也做了实验,事实证明 CNN 中的 Attention 并不合适,起了反效果:
实验 | train loss | val loss | test loss | test 完全准确样本 | 点1平均偏移量 | 点2平均偏移量 | 点3平均偏移量 |
---|---|---|---|---|---|---|---|
RNN+CNN | 2.6558 | 1.7714 | 28.4280 | 1318.0/4500 (29%) | 1.4926 | 1.3679 | 1.5234 |
RNN+CNN+Attention | 6.5938 | 42.4060 | 41.9453 | 1264.0/4500 (28%) | 1.5860 | 1.5557 | 1.8804 |
RNN(Attention)+CNN | 3.3199 | 3.7312 | 22.7644 | 1498.0/4500 (33%) | 1.4721 | 1.2609 | 1.2932 |
RNN+CNN(Attention) | 4.2012 | 4.5143 | 65.8752 | 1039.0/4500 (23%) | 1.5869 | 2.3705 | 1.9389 |
从上图也能看出,RNN(Attention)+CNN 的效果明显优于其他两种方案。
关于位置信息,因为在之前的实验中,对 RNN 嵌入位置信息能够显著提高模型的效果,但是在该问题中,效果不佳。这意味着位置信息其实对 CNN 的决策起到非常大的干扰作用。
实验 | train loss | val loss | test loss | test 完全准确样本 | 点1平均偏移量 | 点2平均偏移量 | 点3平均偏移量 |
---|---|---|---|---|---|---|---|
RNN+CNN+Attention+Position | 11.9669 | 88.9042 | 103.9887 | 739.0/4500 (16%) | 2.4452 | 2.3939 | 2.3833 |
RNN+CNN+Attention+learnable embedding | 19.2102 | 23.4937 | 223.7447 | 473.0/4500 (11%) | 2.9559 | 3.0082 | 3.6864 |
RNN+CNN+Attention+learnable embedding with position | 21.5659 | 25.1544 | 170.9156 | 677.0/4500 (15%) | 2.3320 | 2.6873 | 2.9070 |
上表中 Position 代表采取使用 transformer 中的 sin cos 的位置编码,learnable embedding 意味着直接把 [0,seq_length] 的转化为可学习的embedding,learnable embedding with position 表示在 learnable embedding 中采用 sin cos 的位置编码作为初始化的参数。
从结果来看,无论是 transformer 的位置编码还是 learnable embedding 都没有提升原来模型表现。
5 代码
GRU+CNN+Attention
import torch
import torch.nn as nnclass Config(object):def __init__(self, device, csv_file, img_dir, width, input_size):self.device = deviceself.model_name = 'GRU_CNN_Attention'self.input_size = input_sizeself.hidden_size = 128self.num_layers = 2self.epoch_number = 150self.batch_size = 32self.learn_rate = 0.0002self.csv_file = csv_fileself.img_dir = img_dirself.width = widthclass GRU_CNN(nn.Module):def __init__(self, config):super(GRU_CNN, self).__init__()self.hidden_size = config.hidden_sizeself.num_layers = config.num_layersself.device = config.deviceself.sequence_length = config.widthself.channels = config.input_sizeself.gru = nn.GRU(input_size=self.channels, hidden_size=self.hidden_size, num_layers=self.num_layers,batch_first=True, bidirectional=True, dropout=0.6)self.attention = nn.MultiheadAttention(embed_dim=2 * self.hidden_size, num_heads=4, batch_first=True)self.fc = nn.Linear(2 * self.hidden_size, 4)self.conv1 = nn.Conv2d(4 + self.channels, 32, kernel_size=(1, 3), stride=1, padding=(0, 1))self.se1 = SEAttention(32)self.relu = nn.ReLU()self.pool1 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv2 = nn.Conv2d(32, 64, kernel_size=(1, 3), stride=1, padding=(0, 1))self.se2 = SEAttention(64)self.pool2 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv3 = nn.Conv2d(64, 128, kernel_size=(1, 3), stride=1, padding=(0, 1))self.se3 = SEAttention(128)self.pool3 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.fc1 = nn.Linear(128 * (self.sequence_length // 8), 128)self.fc2 = nn.Linear(128, 3)def forward(self, x):rnn_x = x.squeeze(2).permute(0, 2, 1)# x = x + self.pos_encoding[:, :x.size(1), :].to(x.device)h0 = torch.zeros(self.num_layers * 2, rnn_x.size(0), self.hidden_size).to(x.device)gru_output, _ = self.gru(rnn_x, h0) # batch_size, sequence_length, 2 * hidden_sizecontext_vector, _ = self.attention(gru_output, gru_output, gru_output) # batch_size, sequence_length, 2 * hidden_sizegru_output_fc = self.fc(context_vector) # batch_size, sequence_length, 3gru_output_fc = gru_output_fc.transpose(1, 2).unsqueeze(2) # batch_size, 3, 1, sequence_lengthx = torch.cat((x, gru_output_fc), dim=1)x = self.pool1(self.se1(self.relu(self.conv1(x))))x = self.pool2(self.se2(self.relu(self.conv2(x))))x = self.pool3(self.se3(self.relu(self.conv3(x))))x = x.view(-1, 128 * (self.sequence_length // 8))x = self.relu(self.fc1(x))x = self.fc2(x)return xclass SEAttention(nn.Module):def __init__(self, channel, reduction=16):super(SEAttention, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * y.expand_as(x)
GRU+CNN
import torch
import torch.nn as nnclass Config(object):def __init__(self, device, csv_file, img_dir, width, input_size):self.device = deviceself.model_name = 'GRU_CNN'self.input_size = input_sizeself.hidden_size = 128self.num_layers = 2self.epoch_number = 100self.batch_size = 32self.learn_rate = 0.001self.csv_file = csv_fileself.img_dir = img_dirself.width = widthclass GRU_CNN(nn.Module):def __init__(self, config):super(GRU_CNN, self).__init__()self.hidden_size = config.hidden_sizeself.num_layers = config.num_layersself.device = config.deviceself.sequence_length = config.widthself.channels = config.input_sizeself.gru = nn.GRU(input_size=self.channels, hidden_size=self.hidden_size, num_layers=self.num_layers,batch_first=True, bidirectional=True, dropout=0.6)self.fc = nn.Linear(2 * self.hidden_size, 3)self.conv1 = nn.Conv2d(3 + self.channels, 32, kernel_size=(1, 3), stride=1, padding=(0, 1))self.relu = nn.ReLU()self.pool1 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv2 = nn.Conv2d(32, 64, kernel_size=(1, 3), stride=1, padding=(0, 1))self.pool2 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv3 = nn.Conv2d(64, 128, kernel_size=(1, 3), stride=1, padding=(0, 1))self.pool3 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.fc1 = nn.Linear(128 * (self.sequence_length // 8), 128)self.fc2 = nn.Linear(128, 3)def forward(self, x):rnn_x = x.squeeze(2).permute(0, 2, 1)# x = x + self.pos_encoding[:, :x.size(1), :].to(x.device)h0 = torch.zeros(self.num_layers * 2, rnn_x.size(0), self.hidden_size).to(x.device)gru_output, _ = self.gru(rnn_x, h0) # batch_size, sequence_length, 2 * hidden_sizegru_output_fc = self.fc(gru_output) # batch_size, sequence_length, 3gru_output_fc = gru_output_fc.transpose(1, 2).unsqueeze(2) # batch_size, 3, 1, sequence_lengthx = torch.cat((x, gru_output_fc), dim=1)x = self.pool1(self.relu(self.conv1(x)))x = self.pool2(self.relu(self.conv2(x)))x = self.pool3(self.relu(self.conv3(x)))x = x.view(-1, 128 * (self.sequence_length // 8))x = self.relu(self.fc1(x))x = self.fc2(x)return x
learnable embedding 与 transformer 编码的结合:
class GRU_CNN(nn.Module):def __init__(self, config):super(GRU_CNN, self).__init__()self.hidden_size = config.hidden_sizeself.num_layers = config.num_layersself.device = config.deviceself.sequence_length = config.widthself.channels = config.input_sizeself.gru = nn.GRU(input_size=self.channels, hidden_size=self.hidden_size, num_layers=self.num_layers,batch_first=True, bidirectional=True, dropout=0.6)self.attention = nn.MultiheadAttention(embed_dim=2 * self.hidden_size, num_heads=4, batch_first=True)self.fc = nn.Linear(2 * self.hidden_size, 4)self.conv1 = nn.Conv2d(4 + self.channels, 32, kernel_size=(1, 3), stride=1, padding=(0, 1))self.relu = nn.ReLU()self.pool1 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv2 = nn.Conv2d(32, 64, kernel_size=(1, 3), stride=1, padding=(0, 1))self.pool2 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv3 = nn.Conv2d(64, 128, kernel_size=(1, 3), stride=1, padding=(0, 1))self.pool3 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.fc1 = nn.Linear(128 * (self.sequence_length // 8), 128)self.fc2 = nn.Linear(128, 3)self.positional_embedding = self.generate_positional_encoding(config.width, self.channels).to(self.device)def generate_positional_encoding(self, seq_length, d_model):def generate_sin_cos_positional_encoding(seq_len, d_model):pos = torch.arange(seq_len).unsqueeze(1) # (seq_len, 1)div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) # (d_model / 2)pe = torch.zeros(seq_len, d_model)pe[:, 0::2] = torch.sin(pos * div_term)pe[:, 1::2] = torch.cos(pos * div_term)return pepositional_encoding = generate_sin_cos_positional_encoding(seq_length, d_model)embedding = nn.Embedding(seq_length, d_model)embedding.weight = nn.Parameter(positional_encoding, requires_grad=True)return embeddingdef forward(self, x):rnn_x = x.squeeze(2).permute(0, 2, 1)positions = torch.arange(rnn_x.size(1), device=x.device).unsqueeze(0).expand(rnn_x.size(0), -1)rnn_x = rnn_x + self.positional_embedding(positions)h0 = torch.zeros(self.num_layers * 2, rnn_x.size(0), self.hidden_size).to(x.device)gru_output, _ = self.gru(rnn_x, h0) # batch_size, sequence_length, 2 * hidden_sizecontext_vector, _ = self.attention(gru_output, gru_output, gru_output) # batch_size, sequence_length, 2 * hidden_sizegru_output_fc = self.fc(context_vector) # batch_size, sequence_length, 3gru_output_fc = gru_output_fc.transpose(1, 2).unsqueeze(2) # batch_size, 3, 1, sequence_lengthx = torch.cat((x, gru_output_fc), dim=1)x = self.pool1(self.relu(self.conv1(x)))x = self.pool2(self.relu(self.conv2(x)))x = self.pool3(self.relu(self.conv3(x)))x = x.view(-1, 128 * (self.sequence_length // 8))x = self.relu(self.fc1(x))x = self.fc2(x)return x
相关文章:

基于 RNN(GRU, LSTM)+CNN 的红点位置检测(pytorch)
文章目录 1 项目背景2 数据集3 思路4 实验结果5 代码 1 项目背景 需要在图片精确识别三跟红线所在的位置,并输出这三个像素的位置。 其中,每跟红线占据不止一个像素,并且像素颜色也并不是饱和度和亮度极高的红黑配色,每个红线放大…...

L2G3000-LMDeploy 量化部署实践
文章目录 LMDeploy 量化部署实践闯关任务环境配置W4A16 量化 KV cacheKV cache 量化Function call LMDeploy 量化部署实践闯关任务 环境配置 conda create -n lmdeploy python3.10 -y conda activate lmdeploy conda install pytorch2.1.2 torchvision0.16.2 torchaudio2.1.…...

verilog编程规范
verilog编程规范 文章目录 verilog编程规范前言一、代码划分二、verilog编码ABCDEFG 前言 高内聚,低耦合,干净清爽的代码 一、代码划分 高内聚: 一个功能一个模块干净的接口提取公共的代码 低耦合: 模块之间低耦合尽量用少量…...

飞飞5.4游戏源码(客户端+服务端+工具完整源代码+5.3fix+5.4patch+数据库可编译进游戏)
飞飞5.4游戏源码(客户端服务端工具完整源代码5.3fix5.4patch数据库可编译进游戏) 下载地址: 通过网盘分享的文件:【源码】飞飞5.4游戏源码(客户端服务端工具完整源代码5.3fix5.4patch数据库可编译进游戏) 链…...

【MySQL】——用一文领悟表的增删查改
目录 前言 🍃1.表的增加 🍙1.1增——insert 🍙1.2插入否则更新 🍤1.2.1影响行说明 🍂2.表的查询 🍘2.1查询——select 🍘2.2特殊表查询 🍥2.2.1添加表达式 🍥…...

Zabbix监控Oracle 19c数据库完整配置指南
Zabbix监控Oracle 19c数据库完整配置指南 本文将详细介绍如何使用Zabbix配置Oracle 19c数据库监控,包括安装、配置、问题排查等全过程。本指南适合新手独立完成配置。 1. 环境准备 1.1 系统要求 Oracle 19c数据库服务器Zabbix服务器(版本5.0或更高&a…...

静态路由与交换机配置实验
1.建立网络拓扑 添加2台计算机,标签名为PC0、PC1;添加2台二层交换机2960,标签名为S0、S1;添加2台路由器2811,标签名为R0、R1;交换机划分的VLAN及端口根据如下拓扑图,使用直通线、DCE串口线连接…...

【jvm】讲讲jvm中的gc
目录 1. 说明2. 主要算法2.1 标记-清除算法2.2 复制算法2.3 标记-整理算法3. 主要回收器3.1 Serial GC3.2 Parallel GC3.3 CMS(Concurrent Mark-Sweep)GC3.4 G1(Garbage-First)GC 4. 触发条件4.1 Minor GC(Young GC&am…...

openlayers地图事件
OpenLayers是一个开源的JavaScript库,用于在Web上创建交互式地图。它提供了许多地图事件,使用户可以与地图进行交互。以下是OpenLayers常用的地图事件: 1. click:当用户单击地图时触发该事件。 2. dblclick:当用户双…...

杂记9---一些场景git操作汇总
背景:不同项目需求,所需要git操作集合,不太一样,这里汇总记录一下。 场景1:给本地项目添加到远程仓库的新建分支上 把本地节点保存在自己库的一个分支: git init git remote add origin xxx.git 远程仓库…...

Mysql索引,聚簇索引,非聚簇索引,回表查询
什么是索引 数据库索引是为了实现高效数据查询的一种有序的数据数据结构,类似于书的目录,通过目录可以快速的定位到想要的数据,因为一张表中的数据会有很多,如果直接去表中检索数据效率会很低,所以需要为表中的数据建立…...

【优选算法 二分查找】二分查找算法入门详解:二分查找小专题
x 的平方根 题目解析 算法原理 解法一: 暴力解法 如果要求一个数(x)的平方根,可以从 0 往后枚举,直到有一个数(a),a^2<x,(a1)^2>x,a即为所求; 解法二:二分查找 …...

如何将CSDN博客下载为PDF文件
1.打开CSDN文章内容 2.按键盘上的f12键(或者右键—审查元素)进入浏览器调试模式,点击控制台(Console)进入控制台 3.在控制台输入以下代码,回车 4.在弹出的打印页面中将布局设置成横向,纵向会…...

pdf转word/markdown等格式——MinerU的部署:2024最新的智能数据提取工具
一、简介 MinerU是开源、高质量的数据提取工具,支持多源数据、深度挖掘、自定义规则、快速提取等。含数据采集、处理、存储模块及用户界面,适用于学术、商业、金融、法律等多领域,提高数据获取效率。一站式、开源、高质量的数据提取工具&…...

2024年下半年网络工程师案例分析真题及答案解析
2024年下半年网络工程师案例分析真题及答案解析 试题一(15分) [说明] 公司为某科技园区的不同企业提供网络服务,不同企业的业务有所不同,每个企业因业务需要在不同的地点有多个分支机构。其拓扑结构如图1所示。企业用户通过楼层接入交换机、楼栋汇聚交换机和区域交换机接…...

English phonetic symbol
英语音标发音表-英语48个音标在线读 (jiwake.com) 【英语音标教程】从此学会国际音标|英式音标|BBC音标教程全解_哔哩哔哩_bilibili 元音 单元音 /iː/,/ɪ/ 这两个音不是发音长短的区别, /uː/ /ʊ/ 上面那个就正常读,下面那个她的气大概是往你斜…...

普及组集训--图论最短路径设分层图
P4568 [JLOI2011] 飞行路线 - 洛谷 | 计算机科学教育新生态 可以设置分层图:(伪代码) E(u,v)w;无向图 add(u,v,w),add(v,u,w); for(j1~k){add(ujn,vjn,w);add(vjn,ujn,w);add(ujn-j,vjn-j,0);add(vjn-j,ujn-j,0); } add(ujn-j,vjn-j,0); add(vjn-j,uj…...

SYN6288语音合成模块使用说明(MicroPython、STM32、Arduino)
模块介绍 SYN6288中文语音合成模块是北京宇音天下科技有限公司推出的语音合成模块。该模块通过串口接收主控传来的语音编码后,可自动进行自然流畅的中文语音播报。 注:SYN6288模块无法播报英文单词和句子,只能按字母播报英文 ;而…...

Spring完整知识三(完结)
Spring集成MyBatis 注意 Spring注解形式集成MyBatis时,若SQL语句比较复杂则仍采用映射文件形式书写SQL语句;反之则用注解形式书写SQL语句,具体可详见Spring注解形式 环境准备相同步骤 Step1: 导入相关坐标,完整pom.…...

保姆级教程Docker部署Redis镜像
目录 1、创建挂载目录和配置文件 2、运行Redis镜像 3、查看redis运行状态 1、创建挂载目录和配置文件 # 创建宿主机Redis配置文件存放目录 sudo mkdir -p /data/docker/redis/conf# 创建Redis配置文件 cd /data/docker/redis/conf sudo touch redis.conf 到Github上找到Redi…...

子类有多个父类的情况下Super不支持指定父类来调用方法
1、Super使用方法 super()函数在Python中用于调用父类的方法。它返回一个代理对象,可以通过该对象调用父类的方法。 要使用super()方法,需要在子类的方法中调用super(),并指定子类本身以及方法的名称。这样就可以在子类中调用父类的方法。 …...

AI大模型ollama结合Open-webui
AI大模型Ollama结合Open-webui 作者:行癫(盗版必究) 一:认识 Ollama 1.什么是Ollama Ollama是一个开源的 LLM(大型语言模型)服务工具,用于简化在本地运行大语言模型,降低使用大语言模型的门槛,使得大模型的开发者、研究人员和爱好者能够在本地环境快速实验、管理和…...

RK3568笔记2:NOR_Flash和NAND_Flash与SDMMC和eMMC
1. 本质区别 特性NOR Flash/NAND FlashSDMMC/eMMC定义基础存储器(原始闪存芯片)基于闪存芯片的存储模块,带有控制器组成结构只有原始存储芯片存储芯片 控制器控制方式需主机直接控制,读写逻辑由主机完成内置控制器,主…...

windows python qt5 QChartView画折线图
环境:windows pyqt5 ,用QCartView画折线图 环境需要提前安装 pip install PyQtChart 折线图随着时间推移会不断移动,主动更新x轴坐标 import sys from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout from PyQt5.QtChart imp…...

阿里云通义千问:全面解析智能云服务先锋
一、技术架构与基础 模型构建基石 采用大规模语料库训练,涵盖多领域知识,如科学、历史、文学等,确保知识储备丰富多样。运用先进的神经网络架构,深度优化模型结构,提高信息处理效率与准确性。持续的语料更新机制&…...

QT 贪吃蛇
1.注意点 新new对象时,要food->show(),否则屏幕不显示 setText() 要求字符串 事件的触发必须写在QWidget中或这是他的子类才能触发,snake.cpp继承的是QTimer 产生动态的原因是定时器每间隔一秒执行一次 信号可以定义在别的.cpp中,只要连接…...

二、点亮希望之光:寄存器与库函数驱动 LED 灯
文章目录 一、寄存器1、存储器映射2、存储器映射表3、寄存器4、寄存器映射5、寄存器重映射6、总线基地址、外设基地址、外设寄存器地址7、操作寄存器(以操作一个GPIO口为例)1. 寄存器地址定义部分2. GPIOD_Configuration 函数部分3. main 函数部分 二、库…...

Oracle 用户管理模式下的恢复案例-不完全恢复
1. 不完全恢复的几种常用方法 01. recover database using backup controlfile 如果丢失当前控制文件,用冷备份的控制文件恢复的时候,用来告诉 oracle,不要以 controlfile 中的 scn 作为恢复的终点; 02. recover database until …...

SharpDevelop IDE IViewContent.cs类
文件位置:IViewContent.cs /// <summary>/// IViewContent is the base interface for "windows" in the document area of SharpDevelop./// A view content is a view onto multiple files, or other content that opens like a document/// (e.…...

Unity RectTransUtility工具类
这个工具主要是用于动态生成UI的情况。项目中我们通过配置UI的锚点、位置以及大小(位置、大小都是通过蓝湖看到的),然后通过代码动态生成UI。 大部分情况下只要合理设置锚点,那么生成出来的UI就已经满足了适配的要求。 using UnityEngine;public static…...