设计模式c++(一)
文章目录
- 一、面向对象设计原则
- 二、模版方法
- 三、策略模式
- 四、观察者模式
- 五、装饰模式
- 六、桥模式
- 七、工厂方法_Factory Method
- 八、抽象工厂_Abstract Factory
- 九、原型模式
- 十、构建器_builder
- 十一、单件模式_Singleton
- 十二、享元模式_Flyweight
一、面向对象设计原则
设计模式的八个原则:
- 依赖倒置原则(DIP):高层次的代码(稳定)不应该依赖低层次的代码(变化)、抽象的代码不应该依赖具体的代码。
- 开放封闭原则(OCP):类模块应该开放扩展的,而其原先的代码尽量封闭不可改变。
- 单一职责原则(SRP):一个类应该仅有一个变化的原因,该变化隐含了它的职责,职责太多时会导致扩展时对代码东拉西扯,造成混乱。
- 替换原则(LSP):子类必须能够替换它的基类(IS-A),继承可以表达类型抽象。
- 接口隔离原则(ISP):接口应该小而完备,不该强迫用户使用多余的方法。
- 优先使用组合而不是继承:继承通常会让子类和父类的耦合度增加、组合的方式只要求组件具备良好定义的接口。
- 封装变化点:使用封装来创建对象之间的分界层,让设计者可以在分界层的一侧进行修改,而不会对另一侧产生不良的影响,从而实现层次间的松耦合。
- 针对接口编程,而不是针对实现编程。使用封装来创建对象之间的分界层,让设计者可以在分界层的一侧进行修改,而不会对另一侧产生不良的影响,从而实现层
次间的松耦合。
设计模式关键:重构
重构关键技法
静态->动态
早绑定->晚绑定
继承->组合
编译时依赖->运行时依赖
紧耦合->松耦合
二、模版方法
模式定义
定义一个操作中的算法的骨架 (稳定),而将一些步骤延迟(变化)到子类中。Template Method使得子类可以不改变(复用)一个算法的结构即可重定义(override 重写)该算法的某些特定步骤。
找到稳定,绝大部分时候没有绝对稳定,只有相对稳定
要点总结
Template Method模式是一种非常基础性的设计模式,在面向对象系统中有着大量的应用。它用最简洁的机制(虚函数的多态性)为很多应用程序框架提供了灵活的扩展点,是代码复用方面的基本实现结构。
除了可以灵活应对子步骤的变化外,“不要调用我,让我来调用你”的反向控制结构是Template Method的典型应用。
在具体实现方面,被Template Method调用的虚方法可以具有实现,也可以没有任何实现(抽象方法、纯虚方法),但一般推荐将它们设置为protected方法。
//应用程序开发人员
class Application : public Library {
protected:virtual bool Step2(){//... 子类重写实现}virtual void Step4() {//... 子类重写实现}
};int main(){Library* pLib=new Application(); //子类中重写父类虚函数后,子类指针调用含有父类虚函数的函数则执行重写的函数pLib->Run();delete pLib;}
}//程序库开发人员
class Library{ //稳定即不需要作修改
public://稳定 template method 框架,放置2与5待实现 1 3 5稳定的已经实现的,若run不稳定则不采用此模式void Run(){Step1();if (Step2()) { //支持变化 ==> 虚函数的多态调用Step3(); }for (int i = 0; i < 4; i++){Step4(); //支持变化 ==> 虚函数的多态调用}Step5();}virtual ~Library(){ }protected:void Step1() { //稳定 因此写为实函数//.....}void Step3() {//稳定//.....}void Step5() { //稳定//.....}virtual bool Step2() = 0;//变化 //子类中实现virtual void Step4() =0; //变化 //待实现,写为虚函数
};
三、策略模式
现代软件专业分工之后的第一个结果是“框架与应用程序的划分”,“组件协作”模式通过晚期绑定,来实现框架与应用程序之间的松耦合,是二者之间协作时常用的模式。
在软件构建过程中,某些对象使用的算法可能多种多样,经常改变,如果将这些算法都编码到对象中,将会使对象变得异常复杂;而且有时候支持不使用的算法也是一个性能负担。
模式定义
定义一系列算法,把它们一个个封装起来,并且使它们可互相替换(变化)。该模式使得算法可独立于使用它的客户程序(稳定)而变化(扩展,子类化)。
要点总结
Strategy及其子类为组件提供了一系列可重用的算法,从而可以使得类型在运行时方便地根据需要在各个算法之间进行切换。
Strategy模式提供了用条件判断语句以外的另一种选择,消除条件判断语句,就是在解耦合。含有许多条件判断语句的代码通常都需要Strategy模式。
如果Strategy对象没有实例变量,那么各个上下文可以共享同一个Strategy对象,从而节省对象开销。
class TaxStrategy{
public:virtual double Calculate(const Context& context)=0;virtual ~TaxStrategy(){}
};class CNTax : public TaxStrategy{
public:virtual double Calculate(const Context& context){//***********}
};class USTax : public TaxStrategy{
public:virtual double Calculate(const Context& context){//***********}
};class DETax : public TaxStrategy{
public:virtual double Calculate(const Context& context){//***********}
};//扩展
//*********************************
class FRTax : public TaxStrategy{
public:virtual double Calculate(const Context& context){//.........}
};class SalesOrder{
private:TaxStrategy* strategy;public:SalesOrder(StrategyFactory* strategyFactory){this->strategy = strategyFactory->NewStrategy();}~SalesOrder(){delete this->strategy;}public double CalculateTax(){//...Context context();//输入内容double val = strategy->Calculate(context); //多态调用//...}};
四、观察者模式
在软件构建过程中,我们需要为某些对象建立一种“通知依赖关系” ——一个对象(目标对象)的状态发生改变,所有的依赖对象(观察者对象)都将得到通知。如果这样的依赖关系过于紧密,将使软件不能很好地抵御变化。
使用面向对象技术,可以将这种依赖关系弱化,并形成一种稳定的依赖关系。从而实现软件体系结构的松耦合。
模式定义
定义对象间的一种一对多(变化)的依赖关系,以便当一个对象(Subject)的状态发生改变时,所有依赖于它的对象都得到通知并自动更新。
要点总结
使用面向对象的抽象,Observer模式使得我们可以独立地改变目标与观察者,从而使二者之间的依赖关系达致松耦合。
目标发送通知时,无需指定观察者,通知(可以携带通知信息作为参数)会自动传播。
观察者自己决定是否需要订阅通知,目标对象对此一无所知。
Observer模式是基于事件的UI框架中非常常用的设计模式,也是MVC模式的一个重要组成部分。
class IProgress{
public:virtual void DoProgress(float value)=0;virtual ~IProgress(){}
};
//抽象类加上列表实现的接口class FileSplitter
{string m_filePath;int m_fileNumber;List<IProgress*> m_iprogressList; // 抽象通知机制,支持多个观察者 基类的指针列表可以放入派生类的指针,只能调用基类已有的函数public:FileSplitter(const string& filePath, int fileNumber) :m_filePath(filePath), m_fileNumber(fileNumber){}void split(){//1.读取大文件//2.分批次向小文件中写入for (int i = 0; i < m_fileNumber; i++){//...float progressValue = m_fileNumber;progressValue = (i + 1) / progressValue;onProgress(progressValue);//发送通知 具体目标(被观察者)发生改变,向观察者发送通知} //目标发送并不指定观察者,通知自动传播}void addIProgress(IProgress* iprogress){m_iprogressList.push_back(iprogress);}void removeIProgress(IProgress* iprogress){m_iprogressList.remove(iprogress);}protected:virtual void onProgress(float value){List<IProgress*>::iterator itor=m_iprogressList.begin(); //迭代器指向待显示进度条的模块类指针while (itor != m_iprogressList.end() ) //具体DoProgress通过重写,在功能类中实现(*itor)->DoProgress(value); //更新进度条 具体观察者依次响应itor++;}}
};class MainForm : public Form, public IProgress //多继承的使用应为,一个主继承,多个子功能继承
{ //子功能通过继承虚基类来将类指针传递给列表,功能类上使用列表的迭代器对每个部件进行实现TextBox* txtFilePath; //此处子功能的变化为目标,各部件即为观察者TextBox* txtFileNumber;ProgressBar* progressBar;public:void Button1_Click(){string filePath = txtFilePath->getText();int number = atoi(txtFileNumber->getText().c_str());ConsoleNotifier cn;FileSplitter splitter(filePath, number);splitter.addIProgress(this); //订阅通知 通过继承虚基类的方式将指针放入列表中进行操作splitter.addIProgress(&cn); //订阅通知 观察者自行决定是否订阅splitter.split();splitter.removeIProgress(this);}virtual void DoProgress(float value){progressBar->setValue(value);}
};class ConsoleNotifier : public IProgress {
public:virtual void DoProgress(float value){cout << ".";}
};
五、装饰模式
在某些情况下我们可能会“过度地使用继承来扩展对象的功能”
由于继承为类型引入的静态特质,使得这种扩展方式缺乏灵活性;
并且随着子类的增多(扩展功能的增多),各种子类的组合(扩展功能的组合)会导致更多子类的膨胀。
模式定义
动态(组合)地给一个对象增加一些额外的职责。
就增加功能而言,Decorator模式比生成子类(继承)更为灵活(消除重复代码 & 减少子类个数)。
要点总结
通过采用组合而非继承的手法, Decorator模式实现了在运行时 动态扩展对象功能的能力,而且可以根据需要扩展多个功能。避免了使用继承带来的“灵活性差”和“多子类衍生问题”。
Decorator类在接口上表现为is-a Component的继承关系,即 Decorator类继承了Component类所具有的接口。但在实现上又 表现为has-a Component的组合关系,即Decorator类又使用了 另外一个Component类。
Decorator模式的目的并非解决“多子类衍生的多继承”问题, Decorator模式应用的要点在于解决“主体类在多个方向上的扩展 功能”——是为“装饰”的含义。
举例说明:
//业务操作
class Stream{public:virtual char Read(int number)=0;virtual void Seek(int position)=0;virtual void Write(char data)=0;virtual ~Stream(){}
};//主体类
class FileStream: public Stream{
public:virtual char Read(int number){//读文件流}virtual void Seek(int position){//定位文件流}virtual void Write(char data){//写文件流}};class NetworkStream :public Stream{
public:virtual char Read(int number){//读网络流}virtual void Seek(int position){//定位网络流}virtual void Write(char data){//写网络流}};class MemoryStream :public Stream{
public:virtual char Read(int number){//读内存流}virtual void Seek(int position){//定位内存流}virtual void Write(char data){//写内存流}};//扩展操作class DecoratorStream: public Stream{
protected:Stream* stream;//...DecoratorStream(Stream * stm):stream(stm){ //stream = stm}};class CryptoStream: public DecoratorStream {public:CryptoStream(Stream* stm):DecoratorStream(stm){}virtual char Read(int number){//额外的加密操作...stream->Read(number);//读文件流 对应主体类不同的具体操作 stream赋值对应类指针}virtual void Seek(int position){//额外的加密操作...stream::Seek(position);//定位文件流//额外的加密操作...}virtual void Write(byte data){//额外的加密操作...stream::Write(data);//写文件流//额外的加密操作...}
};class BufferedStream : public DecoratorStream{Stream* stream;//...public:BufferedStream(Stream* stm):DecoratorStream(stm){}//...
};void Process(){//运行时装配FileStream* s1=new FileStream();CryptoStream* s2=new CryptoStream(s1);BufferedStream* s3=new BufferedStream(s1);BufferedStream* s4=new BufferedStream(s2);}
六、桥模式
将抽象部分(业务功能)与实现部分(平台实现)分离,使它们都可以独立地变化。
模式定义
将抽象部分(业务功能)与实现部分(平台实现)分离,使它们都可以独立地变化。
要点总结
Bridge模式使用“对象间的组合关系”解耦了抽象和实现之间固 有的绑定关系,使得抽象和实现可以沿着各自的维度来变化。所谓
抽象和实现沿着各自纬度的变化,即“子类化”它们。
Bridge模式有时候类似于多继承方案,但是多继承方案往往违背单一职责原则(即一个类只有一个变化的原因),复用性比较差。
Bridge模式是比多继承方案更好的解决方法。
Bridge模式的应用一般在“两个非常强的变化维度”,有时一个 类也有多于两个的变化维度,这时可以使用Bridge的扩展模式。
class Messager{
protected:MessagerImp* messagerImp;//...
public:virtual void Login(string username, string password)=0;virtual void SendMessage(string message)=0;virtual void SendPicture(Image image)=0;virtual ~Messager(){}
};class MessagerImp{
public:virtual void PlaySound()=0;virtual void DrawShape()=0;virtual void WriteText()=0;virtual void Connect()=0;virtual MessagerImp(){}
};//平台实现 n
class PCMessagerImp : public MessagerImp{
public:virtual void PlaySound(){//**********}virtual void DrawShape(){//**********}virtual void WriteText(){//**********}virtual void Connect(){//**********}
};class MobileMessagerImp : public MessagerImp{
public:virtual void PlaySound(){//==========}virtual void DrawShape(){//==========}virtual void WriteText(){//==========}virtual void Connect(){//==========}
};//业务抽象 m//类的数目:1+n+mclass MessagerLite :public Messager {public:virtual void Login(string username, string password){messagerImp->Connect();//........}virtual void SendMessage(string message){messagerImp->WriteText();//........}virtual void SendPicture(Image image){messagerImp->DrawShape();//........}
};class MessagerPerfect :public Messager {public:virtual void Login(string username, string password){messagerImp->PlaySound();//********messagerImp->Connect();//........}virtual void SendMessage(string message){messagerImp->PlaySound();//********messagerImp->WriteText();//........}virtual void SendPicture(Image image){messagerImp->PlaySound();//********messagerImp->DrawShape();//........}
};void Process(){//运行时装配MessagerImp* mImp=new PCMessagerImp();Messager *m =new MessagerLite(mImp);
}
七、工厂方法_Factory Method
通过“对象创建” 模式绕开new,来避免对象创建(new)过程中所导致的紧耦合(依赖具体类),从而支持对象创建的稳定。它是接口抽象之后的第一步工作。
模式定义
定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method使得一个类的实例化延迟(目的:解耦,手段:虚函数)到子类。
要点总结
Factory Method模式用于隔离类对象的使用者和具体类型之间的 耦合关系。
面对一个经常变化的具体类型,紧耦合关系(new)会导致软件的脆弱。
Factory Method模式通过面向对象的手法,将所要创建的具体对象工作延迟到子类
从而实现一种扩展(而非更改)的策略,较好地解决了这种紧耦合关系。
Factory Method模式解决“单个对象”的需求变化。缺点在于要 求创建方法/参数相同。
//抽象类
class ISplitter{
public:virtual void split()=0;virtual ~ISplitter(){}
};//工厂基类
class SplitterFactory{
public:virtual ISplitter* CreateSplitter()=0;virtual ~SplitterFactory(){}
};//具体类
class BinarySplitter : public ISplitter{};class TxtSplitter: public ISplitter{};class PictureSplitter: public ISplitter{};class VideoSplitter: public ISplitter{};//具体工厂
class BinarySplitterFactory: public SplitterFactory{
public:virtual ISplitter* CreateSplitter(){return new BinarySplitter();}
};class TxtSplitterFactory: public SplitterFactory{
public:virtual ISplitter* CreateSplitter(){return new TxtSplitter();}
};class PictureSplitterFactory: public SplitterFactory{
public:virtual ISplitter* CreateSplitter(){return new PictureSplitter();}
};class VideoSplitterFactory: public SplitterFactory{
public:virtual ISplitter* CreateSplitter(){return new VideoSplitter();}
};class MainForm : public Form
{SplitterFactory* factory;//工厂public:MainForm(SplitterFactory* factory){this->factory=factory;}void Button1_Click(){ISplitter * splitter=factory->CreateSplitter(); //多态newsplitter->split();}
};
八、抽象工厂_Abstract Factory
在软件系统中,经常面临着“一系列相互依赖的对象”的创建工作;
同时,由于需求的变化,往往存在更多系列对象的创建工作。
如何应对这种变化?如何绕过常规的对象创建方法(new),提供一种“封装机制”来避免客户程序和这种“多系列具体对象创建工作”的紧耦合?
提供一个接口,让该接口负责创建一系列“相关或者相互依赖的对象”,无需指定它们具体的类。
要点总结
如果没有应对“多系列对象构建”的需求变化,则没有必要使用Abstract Factory模式,这时候使用简单的工厂完全可以。
“系列对象”指的是在某一特定系列下的对象之间有相互依赖、或作用的关系。不同系列的对象之间不能相互依赖。
Abstract Factory模式主要在于应对“新系列”的需求变动。其缺点在于难以应对“新对象”的需求变动。
//数据库访问有关的基类
class IDBConnection{};class IDBCommand{};class IDataReader{};class IDBFactory{
public:virtual IDBConnection* CreateDBConnection()=0;virtual IDBCommand* CreateDBCommand()=0;virtual IDataReader* CreateDataReader()=0;};//支持SQL Server
class SqlConnection: public IDBConnection{};
class SqlCommand: public IDBCommand{};
class SqlDataReader: public IDataReader{};class SqlDBFactory:public IDBFactory{
public:virtual IDBConnection* CreateDBConnection()=0;virtual IDBCommand* CreateDBCommand()=0;virtual IDataReader* CreateDataReader()=0;};//支持Oracle
class OracleConnection: public IDBConnection{};class OracleCommand: public IDBCommand{};class OracleDataReader: public IDataReader{};class EmployeeDAO{IDBFactory* dbFactory;public:vector<EmployeeDO> GetEmployees(){IDBConnection* connection =dbFactory->CreateDBConnection();connection->ConnectionString("...");IDBCommand* command =dbFactory->CreateDBCommand();command->CommandText("...");command->SetConnection(connection); //关联性IDBDataReader* reader = command->ExecuteReader(); //关联性while (reader->Read()){}}
};
九、原型模式
在软件系统中,经常面临着“某些结构复杂的对象”的创建工作;由于需求的变化,这些对象经常面临着剧烈的变化,但是它们却拥有比较稳定一致的接口。
如何应对这种变化?如何向“客户程序(使用这些对象的程序)”隔离出“这些易变对象”,从而使得“依赖这些易变对象的客户程序”不随着需求改变而改变?
使用原型实例指定创建对象的种类,然后通过拷贝这些原型来创建新的对象。
要点总结
Prototype模式同样用于隔离类对象的使用者和具体类型(易变类之间的耦合关系,它同样要求这些“易变类”拥有“稳定的接口”。
Prototype模式对于“如何创建易变类的实体对象”采用“原型克隆”的方法来做,它使得我们可以非常灵活地动态创建“拥有某些稳定接口”的新对象–所需工作仅仅是注册一个***新类的对象(即原型)***然后在任何需要的地方Clone。
Prototype模式中的Clone方法可以利用某些框架中的序列化来实现深拷贝。
十、构建器_builder
在软件系统中,有时候面临着“一个复杂对象”的创建工作,其通常由各个部分的子对象用一定的算法构成;
由于需求的变化,这个复杂对象的各个部分经常面临着剧烈的变化,但是将它们组合在一起的算法却相对稳定。
如何应对这种变化?如何提供一种“封装机制”来隔离出“复杂对象的各个部分”的变化,从而保持系统中的“稳定构建算法”不随着需求改变而改变?
将一个复杂对象的构建与其表示相分离,使得同样的构建过
程(稳定)可以创建不同的表示(变化)。
要点总结
Builder 模式主要用于“分步骤构建一个复杂的对象”。在这其中“分步骤”是一个稳定的算法,而复杂对象的各个部分则经常变化。
变化点在哪里,封装哪里—— Builder模式主要在于应对“复杂对象各个部分”的频繁需求变动。其缺点在于难以应对“分步骤构建算法”的需求变动。
在Builder模式中,要注意不同语言中构造器内调用虚函数的差别(C++ vs. C#) 。
class House{//....
};class HouseBuilder {
public:House* GetResult(){return pHouse;}virtual ~HouseBuilder(){}
protected:House* pHouse;virtual void BuildPart1()=0;virtual void BuildPart2()=0;virtual void BuildPart3()=0;virtual void BuildPart4()=0;virtual void BuildPart5()=0;};class StoneHouse: public House{};class StoneHouseBuilder: public HouseBuilder{
protected:virtual void BuildPart1(){//pHouse->Part1 = ...;}virtual void BuildPart2(){}virtual void BuildPart3(){}virtual void BuildPart4(){}virtual void BuildPart5(){}};class HouseDirector{public:HouseBuilder* pHouseBuilder;HouseDirector(HouseBuilder* pHouseBuilder){this->pHouseBuilder=pHouseBuilder;}House* Construct(){pHouseBuilder->BuildPart1();for (int i = 0; i < 4; i++){pHouseBuilder->BuildPart2();}bool flag=pHouseBuilder->BuildPart3();if(flag){pHouseBuilder->BuildPart4();}pHouseBuilder->BuildPart5();return pHouseBuilder->GetResult();}
};
十一、单件模式_Singleton
在软件系统中,经常有这样一些特殊的类,必须保证它们在系统中只存在一个实例,才能确保它们的逻辑正确性、以及良好的效率。
如何绕过常规的构造器,提供一种机制来保证一个类只有一个实例?
这应该是类设计者的责任,而不是使用者的责任。
保证一个类仅有一个实例,并提供一个该实例的全局访问点。
要点总结
Singleton模式中的实例构造器可以设置为protected以允许子类派生
Singleton模式一般不要支持拷贝构造函数和Clone接口,因为这有可能导致多个对象实例,与Singleton模式的初衷违背。
如何实现多线程环境下安全的Singleton?注意对双检查锁的正确实现。
class Singleton{
private:Singleton();Singleton(const Singleton& other);
public:static Singleton* getInstance();static Singleton* m_instance;
};Singleton* Singleton::m_instance=nullptr;//线程非安全版本
Singleton* Singleton::getInstance() {if (m_instance == nullptr) {m_instance = new Singleton();}return m_instance;
}//线程安全版本,但锁的代价过高
Singleton* Singleton::getInstance() {Lock lock;if (m_instance == nullptr) {m_instance = new Singleton();}return m_instance;
}//双检查锁,但由于内存读写reorder不安全
Singleton* Singleton::getInstance() {if(m_instance==nullptr){Lock lock;if (m_instance == nullptr) {m_instance = new Singleton();}}return m_instance;
}//C++ 11版本之后的跨平台实现 (volatile)
std::atomic<Singleton*> Singleton::m_instance;
std::mutex Singleton::m_mutex;Singleton* Singleton::getInstance() {Singleton* tmp = m_instance.load(std::memory_order_relaxed);std::atomic_thread_fence(std::memory_order_acquire);//获取内存fenceif (tmp == nullptr) {std::lock_guard<std::mutex> lock(m_mutex);tmp = m_instance.load(std::memory_order_relaxed);if (tmp == nullptr) {tmp = new Singleton;std::atomic_thread_fence(std::memory_order_release);//释放内存fencem_instance.store(tmp, std::memory_order_relaxed);}}return tmp;
}
十二、享元模式_Flyweight
在软件系统采用纯粹对象方案的问题在于大量细粒度的对象会很快充斥在系统中,从而带来很高的运行时代价–主要指内存需求方面的代价。
如何在避免大量细粒度对象问题的同时,让外部客户程序仍然能够透明地使用面向对象的方式来进行操作?
运用共享技术有效地支持大量细粒度的对象。
要点总结
面向对象很好地解决了抽象性的问题,但是作为一个运行在机器需要考虑对象的代价问题。Flyweight主要解中的程序实决面尚对象的代问题,一般不触及面向对象的抽象性问题。
Flyweight采用对象共享的做法来降低系统中对象的个数,从而降低细粒度对象给系统带来的内存压力。从而降低细粒度对象给系统带来的内存压力。在具体实现方面,要注意对象状态的处理。
对象的数量太大从而导致对象内存开销加大———什么样的数量才算大?这需要我们仔细的根据具体应用情况进行评估,而不能凭空臆断。
class Font {
private://unique object keystring key;//object state//....public:Font(const string& key){//...}
};
ßclass FontFactory{
private:map<string,Font* > fontPool;public:Font* GetFont(const string& key){map<string,Font*>::iterator item=fontPool.find(key);if(item!=footPool.end()){return fontPool[key];}else{Font* font = new Font(key);fontPool[key]= font;return font;}}void clear(){//...}
};
相关文章:

设计模式c++(一)
文章目录 一、面向对象设计原则二、模版方法三、策略模式四、观察者模式五、装饰模式六、桥模式七、工厂方法_Factory Method八、抽象工厂_Abstract Factory九、原型模式十、构建器_builder十一、单件模式_Singleton十二、享元模式_Flyweight 一、面向对象设计原则 设计模式的…...

核密度估计——从直方图到核密度(核函数)估计_带宽选择
参考 核密度估计(KDE)原理及实现-CSDN博客 机器学习算法(二十一):核密度估计 Kernel Density Estimation(KDE)_算法_意念回复-GitCode 开源社区 引言 在统计学中,概率密度估计是一种重要的方法࿰…...

Vant UI Axure移动端元件库:提升移动端原型设计效率
UI框架的选择对于提升开发效率和用户体验至关重要。Vant UI,作为一款基于Vue.js的轻量、可靠的移动端组件库,自2017年开源以来,凭借其丰富的组件库、良好的性能以及广泛的兼容性,在移动端开发领域崭露头角,赢得了众多开…...
如何用 JavaScript 操作 DOM 元素?
如何用 JavaScript 操作 DOM 元素?——结合实际项目代码示例讲解 在前端开发中,DOM(文档对象模型)操作是与页面交互的核心。通过 DOM 操作,开发者可以动态地修改页面内容、响应用户交互、控制样式等。JavaScript 提供…...

【Ubuntu】URDC(Ubuntu远程桌面助手)安装、用法,及莫名其妙进入全黑模式的处理
1、简述 URDC是Ubuntu远程桌面助手的简称。 它可以: 实时显示桌面:URDC支持通过Windows连接至Ubuntu设备(包括x86和ARM架构,例如Jetson系列、树莓派等)的桌面及光标。远程操控双向同步剪切板多客户端连接:同一Ubuntu设备最多可同时被三台Windows客户端连接和操控,适用于…...
ES-DSL查询
term查询 因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。 语法说明: // term查询 GET /index…...
npm 设置镜像
要在npm中设置镜像,你可以使用npm config命令。以下是设置npm镜像的步骤: 临时使用淘宝镜像: npm --registry https://registry.npmmirror.com install package-name 永久设置镜像: npm config set registry https://registry…...

SpringMvc完整知识点一
SpringMVC概述 定义 SpringMVC是一种基于Java实现MVC设计模型的轻量级Web框架 MVC设计模型:即将应用程序分为三个主要组件:模型(Model)、视图(View)和控制器(Controller)。这种分离…...

STM32G4系列MCU双ADC多通道数据转换的应用
目录 概述 1 STM32Cube配置项目 1.1 基本参数配置 1.1.1 ADC1参数配置 1.1.2 ADC2参数配置 1.2 项目软件架构 2 功能实现 2.1 ADC转换初始化 2.2 ADC数据组包 3 测试函数 3.1 Vofa数据接口 3.2 输入数据 4 测试 4.1 ADC1 通道测试 4.2 ADC2 通道测试 概述 本文…...

【工具】音频文件格式转换工具
找开源资源、下载测试不同库的效果,然后找音频、下载音频、编写代码、测试转换、流程通畅。写一个工具花的时间越来越多了!这个 5 天 这个工具是一个音频文件格式转换工具,支持对 mp3.aac.wav.caf.flac.ircam.mp2.mpeg.oga.opus.pcm.ra.spx.…...
ssl证书过期,nginx更换证书以后仍然显示过期证书
记一次nginx部署异常 今天提示ssl证书过期了,然后重新申请了一个证书 反反复复折腾了一个上午,还更换了好几个平台,发现怎么更换都没用,百度上的解决方法都试过了,发现都没用,证书还是显示的原来那一个&…...
原型模式(Prototype Pattern)——对象克隆、深克隆与浅克隆及适用场景
原型模式(Prototype Pattern)是设计模式中的一种创建型模式,目的是通过复制现有的对象来创建新的对象,而不是通过传统的实例化方式。原型模式常常用于需要创建大量类似对象的场景,可以提高性能并减少资源的消耗。下面将…...
从工标网网站解析标准信息
import requests from bs4 import BeautifulSoup 将标准搜索关键词转化成GBK格式,并用%连接转化后16进制,转化成工标网的查询网址url text “GB/T 9755” utf8_encoded_text text.encode(‘GBK’) #print(utf8_encoded_text) hex_representation ‘…...
如何在MySQL中开启死锁日志及查看日志
在数据库的多用户环境中,死锁是一个常见的问题,它可能会影响到数据库的性能和稳定性。MySQL提供了一些工具和命令来帮助我们识别和解决死锁问题。本文将介绍如何在MySQL中开启死锁日志以及如何查看这些日志。 一、为什么需要死锁日志 死锁是指两个或多…...
VCP-CLIP A visual context prompting modelfor zero-shot anomaly segmentation
GitHub - xiaozhen228/VCP-CLIP: (ECCV 2024) VCP-CLIP: A visual context prompting model for zero-shot anomaly segmentation 需要构建正样本,异常样本,以及对应的Mask...

分类算法中的样本不平衡问题及其解决方案
一、样本不平衡问题概述 在机器学习的分类任务中,样本不平衡是指不同类别训练样本数量存在显著差异的现象。这一差异会给模型训练和性能评估带来挑战,尤其在处理少数类样本时,模型可能难以有效学习其特征。 以二分类为例,理想情况…...

博物馆导览系统方案(一)背景需求分析与核心技术实现
维小帮提供多个场所的室内外导航导览方案,如需获取博物馆导览系统解决方案可前往文章最下方获取,如有项目合作及技术交流欢迎私信我们哦~撒花! 一、博物馆导览系统的背景与市场需求 在数字化转型的浪潮中,博物馆作为文化传承和知…...
[创业之路-169]:《BLM战略规划》- 战略洞察 (战略能力中最最核心的能力) - 市场洞察 -1- 看宏观/行业 - 行业:激光器行业的详细分析
目录 一、激光器行业的详细分析 1. 行业总容量分析 2. 行业成长性分析 3. 行业的供需结构 4. 行业的发展阶段与动态S曲线 5. 行业集中度 6. 关键成功因素 二、对深紫外激光器进行如下分析 1、行业总容量分析 2、行业成长性分析 3、行业的供需结构 4、行业的发展阶段…...

抽象工厂模式的理解和实践
在软件开发中,设计模式是解决常见问题的最佳实践。抽象工厂模式是一种创建型设计模式,提供了一种创建一系列相关或相互依赖对象的接口,而无需指定它们的具体类。本文将详细解释抽象工厂模式的概念、结构、优点、缺点,并通过Java代…...

WIDER FACE数据集转YOLO格式
1. 引出问题 本人最近在做毕设相关内容,第一阶段目标是通过目标检测来统计课堂人数,因此需要对人脸和人头进行目标检测。模型方面没什么好说的无脑用YOLO,数据集方面,人脸部分找到了来自港中文的WIDER FACE数据集。但是解压后发现…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...

2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...