当前位置: 首页 > news >正文

两种不同简缩极化的六个方程

方程1 = (3*A*(b - a*1i + 1) - A*((c + d*1i)*(f1 + f2*1i)*1i - (c + d*1i)^2))*(a - b*1i)*1i + 3*A*(b - a*1i + 1) + 2*(A*(c + f2 + d*1i - f1*1i) + A*(c + d*1i - (a + b*1i)*(c + d*1i)*1i))*(c - d*1i) + (A*(c + f2 + d*1i - f1*1i) + A*(c + d*1i - (a + b*1i)*(c + d*1i)*1i))*(f1 - f2*1i)*1i + (A*(b - a*1i + 1) - 3*A*((c + d*1i)*(f1 + f2*1i)*1i - (c + d*1i)^2))*(c - d*1i)^2 - A*((c + d*1i)*(f1 + f2*1i)*1i - (c + d*1i)^2) + (A*(c + f2 + d*1i - f1*1i) + A*(c + d*1i - (a + b*1i)*(c + d*1i)*1i))*(a - b*1i)*(c - d*1i)*1i + (A*(b - a*1i + 1) - 3*A*((c + d*1i)*(f1 + f2*1i)*1i - (c + d*1i)^2))*(c - d*1i)*(f1 - f2*1i)*1i 方程2 = (3*A*(a + b*1i - (a + b*1i)^2*1i) + A*((c + d*1i)*(f1 + f2*1i) - (f1 + f2*1i)^2*1i))*(a - b*1i) + (f1 - f2*1i)*(A*(f1 + f2*1i - (a + b*1i)*(f1 + f2*1i)*1i) + A*((a + b*1i)*(c + d*1i) - (a + b*1i)*(f1 + f2*1i)*1i)) + (3*A*(a + b*1i - (a + b*1i)^2*1i) + A*((c + d*1i)*(f1 + f2*1i) - (f1 + f2*1i)^2*1i))*(a - b*1i)^2*1i + (A*(a + b*1i - (a + b*1i)^2*1i) + 3*A*((c + d*1i)*(f1 + f2*1i) - (f1 + f2*1i)^2*1i))*(f1 - f2*1i)^2*1i + (a - b*1i)*(c - d*1i)*(A*(f1 + f2*1i - (a + b*1i)*(f1 + f2*1i)*1i) + A*((a + b*1i)*(c + d*1i) - (a + b*1i)*(f1 + f2*1i)*1i)) + (a - b*1i)*(f1 - f2*1i)*(A*(f1 + f2*1i - (a + b*1i)*(f1 + f2*1i)*1i) + A*((a + b*1i)*(c + d*1i) - (a + b*1i)*(f1 + f2*1i)*1i))*2i + (A*(a + b*1i - (a + b*1i)^2*1i) + 3*A*((c + d*1i)*(f1 + f2*1i) - (f1 + f2*1i)^2*1i))*(c - d*1i)*(f1 - f2*1i) 方程3 = (3*A*(b - a*1i + 1) - A*((c + d*1i)*(f1 + f2*1i)*1i - (c + d*1i)^2))*(a - b*1i) + (A*(c + f2 + d*1i - f1*1i) + A*(c + d*1i - (a + b*1i)*(c + d*1i)*1i))*(f1 - f2*1i) + (3*A*(b - a*1i + 1) - A*((c + d*1i)*(f1 + f2*1i)*1i - (c + d*1i)^2))*(a - b*1i)^2*1i + (A*(b - a*1i + 1) - 3*A*((c + d*1i)*(f1 + f2*1i)*1i - (c + d*1i)^2))*(f1 - f2*1i)^2*1i + (A*(c + f2 + d*1i - f1*1i) + A*(c + d*1i - (a + b*1i)*(c + d*1i)*1i))*(a - b*1i)*(c - d*1i) + (A*(b - a*1i + 1) - 3*A*((c + d*1i)*(f1 + f2*1i)*1i - (c + d*1i)^2))*(c - d*1i)*(f1 - f2*1i) + (A*(c + f2 + d*1i - f1*1i) + A*(c + d*1i - (a + b*1i)*(c + d*1i)*1i))*(a - b*1i)*(f1 - f2*1i)*2i 方程4 = (c - d*1i)^2*(A*(a + 1 + b*1i) + 3*A*((c + d*1i)*(f1 + f2*1i) + (c + d*1i)^2)) + 3*A*(a + 1 + b*1i) + 2*(A*(c + d*1i + f1 + f2*1i) + A*(c + d*1i + (a + b*1i)*(c + d*1i)))*(c - d*1i) + (A*(c + d*1i + f1 + f2*1i) + A*(c + d*1i + (a + b*1i)*(c + d*1i)))*(f1 - f2*1i) + A*((c + d*1i)*(f1 + f2*1i) + (c + d*1i)^2) + (a - b*1i)*(3*A*(a + 1 + b*1i) + A*((c + d*1i)*(f1 + f2*1i) + (c + d*1i)^2)) + (c - d*1i)*(f1 - f2*1i)*(A*(a + 1 + b*1i) + 3*A*((c + d*1i)*(f1 + f2*1i) + (c + d*1i)^2)) + (A*(c + d*1i + f1 + f2*1i) + A*(c + d*1i + (a + b*1i)*(c + d*1i)))*(a - b*1i)*(c - d*1i) 方程5 = (f1 - f2*1i)^2*(A*(a + b*1i + (a + b*1i)^2) + 3*A*((c + d*1i)*(f1 + f2*1i) + (f1 + f2*1i)^2)) + (a - b*1i)*(3*A*(a + b*1i + (a + b*1i)^2) + A*((c + d*1i)*(f1 + f2*1i) + (f1 + f2*1i)^2)) + (f1 - f2*1i)*(A*(f1 + f2*1i + (a + b*1i)*(f1 + f2*1i)) + A*((a + b*1i)*(c + d*1i) + (a + b*1i)*(f1 + f2*1i))) + (a - b*1i)^2*(3*A*(a + b*1i + (a + b*1i)^2) + A*((c + d*1i)*(f1 + f2*1i) + (f1 + f2*1i)^2)) + (c - d*1i)*(f1 - f2*1i)*(A*(a + b*1i + (a + b*1i)^2) + 3*A*((c + d*1i)*(f1 + f2*1i) + (f1 + f2*1i)^2)) + (a - b*1i)*(c - d*1i)*(A*(f1 + f2*1i + (a + b*1i)*(f1 + f2*1i)) + A*((a + b*1i)*(c + d*1i) + (a + b*1i)*(f1 + f2*1i))) + 2*(a - b*1i)*(f1 - f2*1i)*(A*(f1 + f2*1i + (a + b*1i)*(f1 + f2*1i)) + A*((a + b*1i)*(c + d*1i) + (a + b*1i)*(f1 + f2*1i))) 方程6 = (a - b*1i)^2*(3*A*(a + 1 + b*1i) + A*((c + d*1i)*(f1 + f2*1i) + (c + d*1i)^2)) + (f1 - f2*1i)^2*(A*(a + 1 + b*1i) + 3*A*((c + d*1i)*(f1 + f2*1i) + (c + d*1i)^2)) + (A*(c + d*1i + f1 + f2*1i) + A*(c + d*1i + (a + b*1i)*(c + d*1i)))*(f1 - f2*1i) + (a - b*1i)*(3*A*(a + 1 + b*1i) + A*((c + d*1i)*(f1 + f2*1i) + (c + d*1i)^2)) + (c - d*1i)*(f1 - f2*1i)*(A*(a + 1 + b*1i) + 3*A*((c + d*1i)*(f1 + f2*1i) + (c + d*1i)^2)) + (A*(c + d*1i + f1 + f2*1i) + A*(c + d*1i + (a + b*1i)*(c + d*1i)))*(a - b*1i)*(c - d*1i) + 2*(A*(c + d*1i + f1 + f2*1i) + A*(c + d*1i + (a + b*1i)*(c + d*1i)))*(a - b*1i)*(f1 - f2*1i) 这六个方程有等价的嘛

相关文章:

两种不同简缩极化的六个方程

方程1 (3*A*(b - a*1i 1) - A*((c d*1i)*(f1 f2*1i)*1i - (c d*1i)^2))*(a - b*1i)*1i 3*A*(b - a*1i 1) 2*(A*(c f2 d*1i - f1*1i) A*(c d*1i - (a b*1i)*(c d*1i)*1i))*(c - d*1i) (A*(c f2 d*1i - f1*1i) A*(c d*1i - (a b*1i)*(c d*1i)*1i))*(f1 - f2…...

环形缓冲区(Ring Buffer):概念、功能、使用场景与实现

一、概念 环形缓冲区(Ring Buffer),又称循环缓冲区,是一种用于数据缓冲的数据结构。其核心思想是将缓冲区视为一个环形结构,当数据写入到缓冲区的末尾时,会自动回绕到缓冲区的开头继续写入,形成…...

大连理工大学数据结构2003年硕士入学试题

大连理工大学2003年硕士入学试题 数据结构部分(共75分) 一、回答下列问题(20分) 1.循环队列用数组A[0..m—1)存放其数据元素。设tail指向其实际的队尾,front指向其实际队首的前一个位置,则当前队列中的数据元素有多少个…...

Master EDI 项目需求分析

Master Electronics 通过其全球分销网络,支持多种采购需求,确保能够为客户提供可靠的元件供应链解决方案,同时为快速高效的与全球伙伴建立合作,Master 选择通过EDI来实现与交易伙伴间的数据传输。 EDI为交易伙伴之间建立了一个安…...

图海寻径——图相关算法的奇幻探索之旅

一、图的表示 1. 邻接矩阵 (Adjacency Matrix) #include <iostream> #include <vector> #include <queue> #include <limits>using namespace std;class GraphMatrix { private:int numVertices;vector<vector<int>> adjMatrix;const st…...

亚马逊云科技re:Invent:生成式AI与全球布局

作为全球云计算和人工智能领域一年一度的顶级盛宴&#xff0c;亚马逊云科技2024 re:Invent全球大会吸引了超过6万名现场观众以及40多万名线上参会者。而大会上生成式AI的相关话题和内容&#xff0c;也成为了所有观众关注的焦点。 大会期间&#xff0c;亚马逊云科技全球服务副总…...

Android 因为混淆文件配置,打release包提示running R8问题处理

一、报错信息 Missing classes detected while running R8. Please add the missing classes or apply additional keep rules that are generated in E:\workplace\xxxxxx\app\build\outputs\mapping\release\missing_rules.txt. Missing class org.mediakit.R$layout (refer…...

20241209给Ubuntu20.04系统的的交换分区增加为20GB的步骤

20241209给Ubuntu20.04系统的的交换分区增加为20GB的步骤 2024/12/9 21:10 缘起&#xff0c;编译中科创达的高通CM6125模块的Android10的时候&#xff0c;老报错。 编译环境可以编译荣品的RK3566的Android13/Buildroot。 以前荣品的RK3566的Android13的编译环境是可以编译通CM6…...

Centos7环境下nifi单机部署

Centos7环境下nifi单机部署 前言一、安装Nifi1.1 下载并解压1.2 修改配置文件 二、启动Nifi程序三、Nifi的简单使用3.1 文件移动3.2 本地文件传到HDFS 参考博客 前言 本以为在服务器上部署nifi很简单&#xff0c;跟着教程走就好&#xff0c;但是并没有成功&#xff0c;可能是因…...

如何通过轻易云实现金蝶云星空与旺店通数据集成

案例分享&#xff1a;柏为金蝶退料申请退料开单08.03 在企业的供应链管理中&#xff0c;数据的准确性和实时性至关重要。本文将重点介绍如何通过轻易云数据集成平台&#xff0c;将金蝶云星空的数据高效集成到旺店通旗舰奇门系统中&#xff0c;以实现柏为金蝶退料申请退料开单0…...

OSG开发笔记(三十七):OSG基于windows平台msvc2017x64编译器官方稳定版本OSG3.4.1搭建环境并移植Demo

​若该文为原创文章&#xff0c;未经允许不得转载 本文章博客地址&#xff1a;https://blog.csdn.net/qq21497936/article/details/144258047 各位读者&#xff0c;知识无穷而人力有穷&#xff0c;要么改需求&#xff0c;要么找专业人士&#xff0c;要么自己研究 长沙红胖子Qt…...

2024最新小猫咪PHP加密系统源码V1.4_本地API接口_带后台

2024最新小猫咪PHP加密系统源码V1.4_本地API接口_带后台 小猫咪PHP加密系统历时半年&#xff0c;它再一次迎来更新&#xff0c;更新加密算法&#xff08;这应该是最后一次更新加密算法了&#xff0c;以后主要更新都在框架功能上面了&#xff09;&#xff0c;适配php56-php74&a…...

K8S OOM killer机制

当kubelet没来得及触发pod驱逐&#xff0c;使得节点内存耗尽时&#xff0c;将触发节点上的OOM killer机制&#xff1b; Linux上有个机制叫OOM killer&#xff08;Out Of Memory killer&#xff09;&#xff0c;这个机制会在系统内存耗尽的情况下发挥作用&#xff0c;即根据一定…...

什么是绩效文化?

绩效文化是一种组织文化&#xff0c;它将绩效视为核心价值观&#xff0c;贯穿于组织的各个层面和活动之中。 一、绩效文化的内涵 目标导向 绩效文化强调组织成员都朝着共同的目标努力。这个目标通常是明确、可衡量的&#xff0c;如企业的年度利润目标、市场份额增长目标等。例…...

【人工智能-CV领域】对抗生成网络(GAN)与扩散模型全面解析与深度融合:实现AI生成能力的新突破

文章目录 了解更多AI内容生成模型概述对抗生成网络&#xff08;GAN&#xff09;的深度解析GAN的基本原理GAN的损失函数GAN的优势与挑战 扩散模型&#xff08;Diffusion Model&#xff09;的深入探讨扩散模型的基本原理扩散模型的损失函数扩散模型的优势与挑战 GAN与扩散模型的全…...

IT系统运维监控指标体系-持续完善中

分类指标名称定义说明指标类型采集频率统计数据频率计量单位数据精度应用注册用户数统计当前注册用户总数量统计类1分钟分钟、小时、日个整数应用在线用户数统计当前在线用户总数量统计类1分钟分钟、小时、日个整数应用日登录人数统计当日登录用户总数量统计类1分钟分钟、小时、…...

RPC设计--TcpAcceptor

TcpAcceptor 其功能较为简单&#xff0c;把套接字通信的一整套流程封装起来。在构造函数中就创建好连接套接字、设置好端口复用&#xff0c;等待accept&#xff0c;即自己封装socket 、 bind等函数调用 传入本地要监听的地址和端口&#xff0c;完成上述流程。 可提供getList…...

《Python数据分析:活用pandas库》学习笔记Day1:Panda DataFrame基础知识

Python数据分析&#xff1a;活用pandas库 Python强大易用&#xff0c;是数据处理和数据分析利器&#xff0c;而众多库的加持令其如虎添翼。Pandas就是其中一个非常流行的开源库&#xff0c;它可以确保数据的准确性&#xff0c;将数据可视化&#xff0c;还可以高效地操作大型数…...

【Go 基础】并发相关

并发相关 CAS CAS算法&#xff08;Compare And Swap&#xff09;&#xff0c;是原⼦操作的⼀种,&#xff0c;CAS 算法是⼀种有名的⽆锁算法。⽆锁编程&#xff0c;即不使⽤锁的情况下实现多线程之间的变量同步。可⽤于在多线程编程中实现不被打断的数据交换操作&#xff0c;从…...

数据质量规则(Data Quality Rules)

数据质量规则&#xff08;Data Quality Rules&#xff09;是指用来确保数据的准确性、完整性、一致性和可用性的标准或逻辑规则。这些规则通常在数据集成、数据存储和数据分析过程中执行&#xff0c;以保证数据符合预期的业务需求或技术规范。 以下是数据质量规则的分类及其内…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

OCR MLLM Evaluation

为什么需要评测体系&#xff1f;——背景与矛盾 ​​ 能干的事&#xff1a;​​ 看清楚发票、身份证上的字&#xff08;准确率>90%&#xff09;&#xff0c;速度飞快&#xff08;眨眼间完成&#xff09;。​​干不了的事&#xff1a;​​ 碰到复杂表格&#xff08;合并单元…...