电子商务人工智能指南 6/6 - 人工智能生成的产品图像
介绍
81% 的零售业高管表示, AI 至少在其组织中发挥了中等至完全的作用。然而,78% 的受访零售业高管表示,很难跟上不断发展的 AI 格局。 近年来,电子商务团队加快了适应新客户偏好和创造卓越数字购物体验的需求。采用 AI 不再是一种选择,而是零售商推动规模增长和保持市场差异化的必要条件。电子商务公司现在正在使用 AI 来创建新的客户参与形式,增强在线结账解决方案,并推动数字商务的经济高效流程。
本指南将全面概述人工智能在电子商务公司的主要应用,并分享 Scale 在零售领域的经验最佳实践。
电子商务人工智能:为什么它很重要?
人工智能对电子商务有多种益处:
增强客户体验: 电子商务的 AI 解决方案可以帮助公司个性化产品推荐、改善搜索结果并更好地了解客户情绪。借助准确的个性化和推荐机器学习模型,公司可以帮助减少购买时间、在产品详细信息页面上准确描述产品并更好地了解客户行为。通过投资准确的 ML 模型,团队可以实现提高购物转化率和提高客户满意度的目标。此外,电子商务公司可以通过删除违反平台准则的内容(从用户生成的内容到商家特定数据)来提高信任度和安全性。
最大化盈利能力: ML 模型可以帮助根据购物和浏览历史提供准确且有针对性的产品推荐,并细分客户分析以提供更准确的广告。通过使用 AI 丰富内容元数据,团队可以更好地了解内容和产品格局。这使电子商务公司能够更好地专注于产品和内容增长工作,并尽早缩小趋势范围。
加速运营流程: 购物和内容趋势瞬息万变,而手动操作流程却过于缓慢。加速新商家入职、需求预测和内容优化等运营流程。人机交互等技术可以增强机器学习模型,使其达到人类水平的准确性和质量。
现有的没有人工智能的流程无法满足消费者不断变化的需求。电子商务市场面临三大挑战:
- 成本和投资呈指数级增长: 仅使用内部运营团队来管理电子商务数据和激活新产品通常会抑制增长。手动操作来获取、清理和丰富数据非常耗时。生成新产品资产(例如产品描述和产品摄影)的成本很高。
- 缺乏属性数据: 个性化系统受限于稀疏的属性数据。产品数据可能包含不正确的信息、重复项和缺失的属性,导致搜索和产品推荐效果不佳。用户行为内容元数据不够详细,导致内容推荐系统存在缺陷。
- 手动流程太慢: 消费者行为和内容趋势变化很快。当前系统需要太多时间和流程来发现和展示热门内容,平台在保持客户参与度和转化率方面落后。
在本指南中,我们将解释帮助解决这些挑战的主要用例,并提供帮助您利用 AI 发展业务的路线图。
电子商务中的人工智能:主要用例
电子商务中人工智能有许多不同的应用。在本指南中,我们将重点介绍电子商务中以数据为中心的应用程序的六个主要类别:
- 搜索、广告和发现
- 需求预测和库存管理
- 聊天机器人和客户服务
- 内容理解
- 丰富的产品数据
- 人工智能生成的产品图像
人工智能生成的产品图像
在我们 之前的指南中,我们解释了传播模型如何能够生成您能想象到的任何图像。这为营销人员和品牌经理提供了多种应用,可以为广告创意、活动和社交媒体生成新产品图像。 研究表明 ,转化率会随着产品图像数量的增加而翻倍。
目前,零售商和广告商在为客户创造引人入胜的购物体验时,产品摄影的数量和质量受到限制。拍摄所需的投资、产品目录的规模以及受众的多样化品味都增加了这一负担。
为了解决这一挑战,团队可以使用生成式人工智能在不同场景中创建大量高保真产品图像,同时保持零售产品的品牌保留。
如何为电子商务实施人工智能
1. 协调产品目标: 首先确定业务问题并将目标与产品性能指标联系起来对于实施电子商务 AI 至关重要。通过与产品团队密切合作,从事电子商务的团队可以提供与内部指标的直接关联。
2. 缩小用例范围: 专注于解决您的业务问题并实现创收的特定用例。
3. 选择员工: 实施全面的电子商务解决方案需要专业知识。聘请专家来帮助您制定解决业务问题的路线图。
4. 开始实验: 不要将实验局限于仅提供即时投资回报的解决方案。您可能不知道哪种实验会为您带来指数级的回报,因此请同时进行多项测试并查看数据以了解影响。
结论
本指南涵盖了电子商务中人工智能的主要用例和应用。随着零售和电子商务格局的快速发展,加快创新以满足客户需求至关重要。 在最近的一项研究中, 69% 的零售高管表示其组织的人工智能计划产生了更多价值。 在 Scale,我们相信投资数据是电子商务公司取得成功的关键。我们很高兴看到公司能够利用最好的人工智能工具创造出什么。
https://scale.com/guides/ai-for-ecommercehttps://scale.com/guides/ai-for-ecommerce
ApiSmart
ApiSmart Api design Copilot - ApiHugApiSmart make your api design and implement happier编辑https://apihug.com/zhCN-docs/copilothttps://apihug.com/zhCN-docs/copilot
ApiSmart 已经支持18家大模型供应商,n+大模型接入(本地环境可无限多模型);
-
OpenAi
-
Azure
-
Gemini
-
Anthropic
-
DeepInfra
-
Mooshot
-
Zhipu
-
DeepSeek
-
Qianfan
-
Grop
-
Ollama
-
Mistral
-
LMStudio
-
OpenRouter
-
Jan
-
GPT4All
-
通义-阿里
-
混元-腾讯
ApiHug - API Design & Develop New Paradigm.ApiHug - API Design & Develop New Paradigm.https://apihug.com/https://apihug.com/ApiSmart Api design Copilot - ApiHugApiSmart make your api design and implement happierhttps://apihug.com/zhCN-docs/copilot
https://apihug.com/zhCN-docs/copilot
相关文章:

电子商务人工智能指南 6/6 - 人工智能生成的产品图像
介绍 81% 的零售业高管表示, AI 至少在其组织中发挥了中等至完全的作用。然而,78% 的受访零售业高管表示,很难跟上不断发展的 AI 格局。 近年来,电子商务团队加快了适应新客户偏好和创造卓越数字购物体验的需求。采用 AI 不再是一…...

【论文阅读】相似误差订正方法在风电短期风速预报中的应用研究
文章目录 概述:摘要1. 引言2. 相似误差订正算法(核心)3. 订正实验3.1 相似因子选取3.2 相似样本数试验3.3 时间窗时长实验 4. 订正结果分析4.1 评估指标对比4.2 风速曲线对比4.3 分风速段订正效果评估4.4 风速频率统计 5. 结论与讨论 概述&am…...
贪心算法 - 学习笔记 【C++】
2024-12-09 - 第 38 篇 贪心算法 - 学习笔记 作者(Author): 郑龙浩 / 仟濹(CSND账号名) 贪心算法 学习课程: https://www.bilibili.com/video/BV1f84y1i7mv/?spm_id_from333.337.search-card.all.click&vd_source2683707f584c21c57616cc6ce8454e2b 一、基本…...

精确的单向延迟测量:使用普通硬件和软件
论文标题:Precise One-way Delay Measurement with Common Hardware and Software(精确的单向延迟测量:使用普通硬件和软件) 作者信息:Maciej Muehleisen 和 Mazen Abdel Latif,来自Ericsson Research Eri…...
【MySQL 进阶之路】存储引擎和SQL优化技巧分析
1.InnoDB和MyISAM存储引擎的区别是什么?你在哪些场景下选择InnoDB? Innodb是高并发,支持事务跟行级锁,myisam不支持事务和行级锁,支持表级锁,不支持高并发。innodb底层是B树,适合范围查询&#…...
vue+elementUI从B页面回到A页面并且定位到A页面的el-tabs的某个页签
场景 做项目碰到一个需求,不能使用组件缓存keep-alive,但是需要跳转到B页面后,点击B页面的返回回到A页面的某个页签,灵机一动利用路由拦截去判断即将要跳转的页面后,在获取vm里对应的标签变量进行赋值,实现…...

{结对编程/大模型} 实践营项目案例 | 基于RAG搭建政策问答智能聊天助手
在构建政策问答智能聊天助手的过程中,我们采用了 RAG(Retrieval-Augmented Generation)技术。RAG 是一种结合了检索和生成的混合型自然语言处理技术,它通过检索相关信息来增强生成模型的上下文理解能力。RAG 的主要优点在于能够有…...

【Canvas与图标】乡土风金属铝边立方红黄底黑字图像处理图标
【成图】 120*120图标: 大小图: 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>金属铝边立方红黄底黑…...

【开源】A064—基于JAVA的民族婚纱预定系统的设计与实现
🙊作者简介:在校研究生,拥有计算机专业的研究生开发团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看项目链接获取⬇️,记得注明来意哦~🌹 赠送计算机毕业设计600个选题ex…...

C++实现一个经典计算器(逆波兰算法)附源码
1、本篇要实现的内容 最近,大家讨论计算器的实现比较热,今天我也来用C和Visual Studio实现一个计算器的小程序。这里使用逆波兰算法,能够根据当前用户输入的算式表达式字符串,计算出所要的结果,算式字符串可以包括加、…...
Python知识分享第二十二天-数据结构入门
数据结构 “”" 基础概念: 程序 数据结构 算法 数据结构 存储和组织数据的方式. 算法 解决问题的思维, 思路, 方式. 算法的特性:独立性: 算法 思维, 是解决问题的思路和方式, 不依赖语言.5大特性: 有输入, 有输出, 有穷性, 确定性, 可行性.问: 如何衡量算法的优劣?…...

【WRF理论第十三期】详细介绍 Registry 的作用、结构和内容
目录 1. Introduction:介绍 Registry 的作用和功能。2. Registry Contents:详细描述 Registry 的结构和内容,包括各个部分的条目类型。2.1. DIMSPEC ENTRIES(维度规格条目)2.2. STATE ENTRIES(状态变量条目…...
Android启动优化指南
文章目录 前言一、启动分类与优化目标1、冷启动1.1 优化思路1.2 延迟初始化与按需加载1.3 并行加载与异步执行1.4 资源优化与懒加载1.5 内存优化与垃圾回收控制 2. 温启动2.1 优化应用的生命周期管理2.2 数据缓存与懒加载2.3 延迟渲染与视图优化 3. 热启动3.1 保持应用的状态3.…...
【ETCD】【源码阅读】configureClientListeners () 函数解析
逐步解析 configureClientListeners 函数 configureClientListeners 是 ETCD 的一个重要函数,用于配置客户端通信的监听器(Client Listeners)。这些监听器主要负责处理外部客户端与 ETCD 服务之间的通信,包括 HTTP 和 gRPC 请求。…...

IO进程学习笔记
man手册 普通命令。系统调用的函数。库函数。特殊文件。文件格式。游戏。附加的一些变量 IO介绍 I:input 输入 O:output 输出 对文件的输入和输出 输入-》写文件,将文件中的内容写到内存中去 输出-》读文件,将内存中的内容读取到文…...
智能手机回暖:华为点火,小米荣耀OV拱火
进入11月中下旬,智能手机圈再度热闹起来。包括华为、小米、OPPO、vivo等诸多手机厂商,都在陆续预热发布新机,其中就包括华为Mate 70、小米Redmi K80、vivo的S20,IQOO Neo10等热门新机,这些热门新机的集中上市迅速吸引了…...

Sqoop导入数据(mysql---->>hive)
目录 数据传输流程脚本报错和异常说明1. Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf2. 数据导入hive后显示NULL 数据传输流程 mysql---->>hdfs---->>hive 数据从mysql表中取出,放到hdfs上(由targ…...

实验3-实时数据流处理-Flink
1.前期准备 (1)Flink基础环境安装 参考文章: 利用docker-compose来搭建flink集群-CSDN博客 显示为这样就成功了 (2)把docker,docker-compose,kafka集群安装配置好 参考文章: …...

深度学习实验十四 循环神经网络(1)——测试简单循环网络的记忆能力
目录 一、数据集构建 1.1数据集的构建函数 1.2加载数据集并划分 1.3 构建Dataset类 二、模型构建 2.1嵌入层 2.2SRN层 2.3模型汇总 三、模型训练 3.1 训练指定长度的数字预测模型 3.2 损失曲线展示 四、模型评价 五、修改 附完整可运行代码 实验大体步骤&#x…...

k8s部署odoo18(kubeshpere面板)
Postgresql部署 链接: kubesphere搭建 postgres15 因为我的是在另一台服务器使用kubesphere进行部署的,如果有和我一样情况的,可以参考上面的文档部署postgreasql。 注意事项: 因为odoo不允许使用postgresql的默认用户,也就是po…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

C++--string的模拟实现
一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...