当前位置: 首页 > news >正文

【OpenCV】图像转换

理论

傅立叶变换用于分析各种滤波器的频率特性。对于图像,使用 2D离散傅里叶变换(DFT) 查找频域。快速算法称为 快速傅立叶变换(FFT) 用于计算DFT。

Numpy中的傅立叶变换

首先,我们将看到如何使用Numpy查找傅立叶变换。Numpy具有FFT软件包来执行此操作。np.fft.fft2() 为我们提供了频率转换,它将是一个复杂的数组。它的第一个参数是输入图像,即灰度图像。第二个参数是可选的,它决定输出数组的大小。如果它大于输入图像的大小,则在计算FFT之前用零填充输入图像。如果小于输入图像,将裁切输入图像。如果未传递任何参数,则输出数组的大小将与输入的大小相同。

现在,一旦获得结果,零频率分量(DC分量)将位于左上角。如果要使其居中,只需通过函数 np.fft.fftshift() 即可完成。(它更容易分析)。找到频率变换后,就可以找到幅度谱。

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

结果如下:

fft1.jpg

可以在中心看到更多白色区域,这表明低频内容更多。

因此,您已经进行了频率变换,您可以在频域中执行一些操作,例如高通滤波和重建图像,若进行逆DFT。为此,您需用尺寸为60x60的矩形窗口遮罩来消除低频。然后,使用 np.fft.ifftshift() 应用反向移位,以使DC分量再次出现在左上角。然后使用 np.ifft2() 函数找到逆FFT 。同样,结果将是一个复数。

rows, cols = img.shape
crow,ccol = rows//2 , cols//2
fshift[crow-30:crow+31, ccol-30:ccol+31] = 0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.real(img_back)
plt.subplot(131),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(img_back, cmap = 'gray')
plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(img_back)
plt.title('Result in JET'), plt.xticks([]), plt.yticks([])
plt.show()

结果如下:

fft2.jpg

结果表明高通滤波是边缘检测操作。

如果您仔细观察结果,尤其是最后一张JET颜色的图像,您会看到一些伪像(我用红色箭头标记的一个实例)。它在那里显示出一些波纹状结构,称为 振铃效应 。这是由我们用于遮罩的矩形窗口引起的。此蒙版转换为正弦形状,从而导致此问题。因此,矩形窗口不用于过滤。更好的选择是高斯窗口。

OpenCV中的傅立叶变换

OpenCV 为此提供了功能 cv.dft() 和 cv.idft() 。它返回与以前相同的结果,但是有两个通道。第一个通道将具有结果的实部,第二个通道将具有结果的虚部。输入的图像应首先转换为np.float32 。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

注意 还可以使用 cv.cartToPolar() 一次返回大小和相位

因此,现在我们必须进行逆DFT。在上一部分中,我们创建了一个HPF,这次我们将看到如何去除图像中的高频内容,即我们将LPF应用于图像。实际上会使图像模糊。为此,我们首先创建一个在低频时具有高值(1)的蒙版,即,我们传递LF含量,并在HF区域传递0。

rows, cols = img.shape
crow,ccol = rows/2 , cols/2
# create a mask first, center square is 1, remaining all zeros
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
# apply mask and inverse DFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv.idft(f_ishift)
img_back = cv.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

查看结果:

fft4.jpg

注意 像往常一样,OpenCV函数 cv.dft() 和 cv.idft() 比Numpy对应函数要快。但是Numpy功能更加人性化。

DFT的性能优化

对于某些阵列大小,DFT计算的性能更好。当阵列大小为2的幂时,它是最快的。大小为2、3和5的乘积的数组也得到了有效处理。因此,如果您担心代码的性能,可以在找到DFT之前将数组的大小修改为任何最佳大小(通过填充零)。对于OpenCV,您必须手动填充零。但是对于Numpy,您可以指定FFT计算的新大小,它将自动为您填充零。

那么我们如何找到这个最佳尺寸呢?OpenCV 为此提供了一个函数 cv.getOptimalDFTSize() 。它适用于 cv.dft() 和 np.fft.fft2() 。让我们使用IPython magic命令timeit检查它们的性能。

In [16]: img = cv.imread('messi5.jpg',0)
In [17]: rows,cols = img.shape
In [18]: print("{} {}".format(rows,cols))
342 548
In [19]: nrows = cv.getOptimalDFTSize(rows)
In [20]: ncols = cv.getOptimalDFTSize(cols)
In [21]: print("{} {}".format(nrows,ncols))
360 576

参见,将大小(342,548)修改为(360,576)。现在让我们用零填充(对于OpenCV),并找到其DFT计算性能。您可以通过创建一个新的大零数组并将数据复制到其中来完成此操作,或者使用 cv.copyMakeBorder() 。

nimg = np.zeros((nrows,ncols))
nimg[:rows,:cols] = img

要么:

right = ncols - cols
bottom = nrows - rows
bordertype = cv.BORDER_CONSTANT #just to avoid line breakup in PDF file
nimg = cv.copyMakeBorder(img,0,bottom,0,right,bordertype, value = 0)

现在,我们计算Numpy函数的DFT性能比较:

In [22]: %timeit fft1 = np.fft.fft2(img)
10 loops, best of 3: 40.9 ms per loop
In [23]: %timeit fft2 = np.fft.fft2(img,[nrows,ncols])
100 loops, best of 3: 10.4 ms per loop

它显示了4倍的加速。现在,我们将尝试使用OpenCV函数。

In [24]: %timeit dft1= cv.dft(np.float32(img),flags=cv.DFT_COMPLEX_OUTPUT)
100 loops, best of 3: 13.5 ms per loop
In [27]: %timeit dft2= cv.dft(np.float32(nimg),flags=cv.DFT_COMPLEX_OUTPUT)
100 loops, best of 3: 3.11 ms per loop

它还显示了4倍的加速。可以看到OpenCV函数比Numpy函数快3倍左右。

apachecn.github.io/opencv-doc-zh/#/

相关文章:

【OpenCV】图像转换

理论 傅立叶变换用于分析各种滤波器的频率特性。对于图像,使用 2D离散傅里叶变换(DFT) 查找频域。快速算法称为 快速傅立叶变换(FFT) 用于计算DFT。 Numpy中的傅立叶变换 首先,我们将看到如何使用Numpy查…...

力扣 重排链表-143

重排链表-143 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListNode *next) : val(x), next(next)…...

【Kubernetes理论篇】容器集群管理系统Kubernetes(K8S)

Kubernetes集群部署基本管理实战 这么好的机会,还在等什么! 01、Kubernetes 概述 K8S是什么 K8S 的全称为 Kubernetes (K12345678S),PS:“嘛,写全称也太累了吧,写”。不如整个缩写 K8s 作为缩写的结果…...

Kubernetes 常用操作大全:全面掌握 K8s 基础与进阶命令

Kubernetes(简称 K8s)作为一种开源的容器编排工具,已经成为现代分布式系统中的标准。它的强大之处在于能够自动化应用程序的部署、扩展和管理。在使用 Kubernetes 的过程中,熟悉常用操作对于高效地管理集群资源至关重要。本文将详…...

爬虫基础之Web网页基础

网页的组成 网页可以分为三大部分–HTML、CSS 和 JavaScript。如果把网页比作一个人,那么 HTML 相当于骨架、JavaScript 相当于肌肉、CSS 相当于皮肤,这三者结合起来才能形成一个完善的网页。下面我们分别介绍一下这三部分的功能。 HTML HTML(Hypertext…...

k8s, deployment

控制循环(control loop) for {实际状态 : 获取集群中对象X的实际状态(Actual State)期望状态 : 获取集群中对象X的期望状态(Desired State)if 实际状态 期望状态{什么都不做} else {执行编排动作&#xf…...

使用ensp搭建OSPF+BGP和静态路由,底层PC使用dhcp,实现PC互通

1.4种方式,实现PC2可以互通底层的所有设备 OSPF:OSPF是一种用于互联网协议网络的链路状态路由协议 BGP:是一种用于互联网上进行路由和可达性信息传递的外部网关协议(EGP) 静态路由: 静态路由是一种路由方…...

TÜLU 3: Pushing Frontiers in Open Language Model Post-Training

基本信息 📝 原文链接: https://arxiv.org/abs/2411.15124👥 作者: Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Sau…...

深入解读 MySQL EXPLAIN 与索引优化实践

MySQL 是当今最流行的关系型数据库之一,为了提升查询性能,合理使用 EXPLAIN 工具和优化索引显得尤为重要。本文将结合实际示例,探讨如何利用 EXPLAIN 分析查询执行计划,并分享索引优化的最佳实践。 一、EXPLAIN 工具简介 EXPLAIN …...

Flume——进阶(agent特性+三种结构:串联,多路复用,聚合)

目录 agent特性ChannelSelector描述: SinkProcessor描述: 串联架构结构图解定义与描述配置示例Flume1(监测端node1)Flume3(接收端node3)启动方式 复制和多路复用结构图解定义描述配置示例node1node2node3启…...

ragflow连ollama时出现的Bug

ragflow和ollama连接后,已经添加了两个模型但是ragflow仍然一直warn:Please add both embedding model and LLM in Settings > Model providers firstly.这里可能是我一开始拉取的镜像容器太小,容不下当前添加的模型,导…...

基于centos7.7编译Redis6.0

背景: OS:CentOs 7.7 Redis: 6.0.6 编译构建报错如下: In file included from server.c:30:0: server.h:1044:5: error: expected specifier-qualifier-list before ‘_Atomic’_Atomic unsigned int lruclock; /* Clock for LRU eviction …...

uni-app项目无法在Android Studio模拟器上运行

目录 1 问题描述2 尝试解决3 引发原因4 解决方法4.1 换用 MuMu 模拟器 5 结语 1 问题描述 在使用 uni-app 开发 Pad 端 App 时,初始化项目后打算先运行一下确保初始化正常。打开 Android Studio 模拟器后,然后在 HbuilderX 中选择使用 App 标准基座 运…...

第一部分:Linux系统(基础及命令)

Linux操作系统的实操性非常强,纯操作,不适用于日常的办公使用 1.初始Linux 1.1 操作系统概述 1.1.1 了解OS的作用 OS:是计算机软件的一种,主要负责:作为用户和计算机硬件之间的桥梁,调度和管理计算机硬…...

No module named ‘_ssl‘ No module named ‘_ctypes‘

如果你使用的是基于 yum 的 Linux 发行版(例如 CentOS、RHEL、Fedora),安装 libc6-dev 的方式稍有不同。在这些系统中,通常对应的包是 glibc-devel。 No module named ‘_ctypes’ 使用 yum 安装 glibc-devel 更新系统的软件包列…...

【QT】编写第一个 QT 程序 对象树 Qt 编程事项 内存泄露问题

目录 1. 编写第一个 QT 程序 1.1 使用 标签 实现 🐇 图形化界面实现 🐇 纯代码形式实现 1.2 使用 按钮 实现 🐋 图形化界面实现 🐋 纯代码形式实现 1.3 使用 编辑框 实现 🥝 图形化界面实现 &#x1f95…...

VTK编程指南<六>:VTK可视化管线与渲染详解

1、VTK渲染引擎 回顾前几章节的RenderCylinder示例 可以找到以下的类: vtkProp; ytkAbstractMapper; vtkProperty; vtkCamera; vtkLight; vtkRenderer; vtkRenderWindow; vtkRenderWindowInteractor vtkTransform; vtkLookupTable;可以发现这些类都是与数据显示或渲染相关的。…...

基于STM32的智能计步器

引言 随着健康意识的提高,计步器逐渐成为人们日常生活中重要的健康管理工具。本文将指导你如何使用STM32微控制器制作一个智能计步器。该计步器通过加速度传感器检测步伐,并使用OLED显示屏显示步数。通过这个项目,你将学习到STM32开发的基本流…...

VB.NET 从入门到精通:开启编程进阶之路

摘要: 本文全面深入地阐述了 VB.NET 的学习路径,从基础的环境搭建与语法入门开始,逐步深入到面向对象编程、图形用户界面设计、数据访问、异常处理、多线程编程以及与其他技术的集成等核心领域,通过详细的代码示例与理论讲解&…...

射频电路屏蔽简略

电磁波的干扰是每个射频设备的自带属性,不管是内部还是外部,怎样去更好的抑制掉干扰,关系到射频设备的工作状态,而能够找到产生干扰的来源就是重中之重,电磁波的干扰与其产生的源密不可分,而源就离不开所需…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

【机器视觉】单目测距——运动结构恢复

ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛&#xf…...

OpenLayers 分屏对比(地图联动)

注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

flow_controllers

关键点: 流控制器类型: 同步(Sync):发布操作会阻塞,直到数据被确认发送。异步(Async):发布操作非阻塞,数据发送由后台线程处理。纯同步(PureSync…...

【iOS】 Block再学习

iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...