深度学习案例:DenseNet + SE-Net
本文为为🔗365天深度学习训练营内部文章
原作者:K同学啊
一 回顾DenseNet算法
DenseNet(Densely Connected Convolutional Networks)是一种深度卷积神经网络架构,提出的核心思想是通过在每一层与前面所有层进行直接连接,极大地增强了信息和梯度的流动。传统的卷积神经网络(CNN)结构中,每一层的输入仅来自前一层,而DenseNet通过让每一层的输入包含所有前面层的输出,形成了更密集的连接。这样的设计能够减少梯度消失的问题,促进特征复用,提高模型的表现力和学习效率。
DenseNet的优势主要体现在两个方面。首先,由于密集连接的特点,它在同等参数量下比传统的卷积网络能够学习到更丰富的特征,提升了网络的性能。其次,由于每层都接收前面层的特征图,DenseNet有效缓解了深度神经网络中训练难度较大的问题,特别是在处理深层网络时,可以显著提高梯度的传递效率,减少了对大规模数据集的需求。通过这些优点,DenseNet在图像分类、目标检测等任务中表现出色。
通道注意力机制上文提及,不再叙述。以下是DenseNet+SE-Net代码
'''
SE模块实现
'''
import tensorflow as tf
from keras.models import Model
from keras import layers
from keras import backendclass Squeeze_excitation_layer(tf.keras.Model):def __init__(self, filter_sq):super().__init__()self.filter_sq = filter_sqself.avepool = tf.keras.layers.GlobalAveragePooling2D()def build(self, input_shape):self.dense1 = tf.keras.layers.Dense(self.filter_sq, activation='relu')self.dense2 = tf.keras.layers.Dense(input_shape[-1], activation='sigmoid')def call(self, inputs):squeeze = self.avepool(inputs)excitation = self.dense1(squeeze)excitation = self.dense2(excitation)excitation = tf.keras.layers.Reshape((1, 1, inputs.shape[-1]))(excitation)scale = inputs * excitationreturn scaledef dense_block(x,blocks,name):for i in range(blocks):x = conv_block(x,32,name=name+'_block'+str(i+1))return xdef conv_block(x,growth_rate,name):bn_axis = 3x1 = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name=name+'_0_bn')(x)x1 = layers.Activation('relu',name=name+'_0_relu')(x1)x1 = layers.Conv2D(4*growth_rate,1,use_bias=False,name=name+'_1_conv')(x1)x1 = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name=name + '_1_bn')(x1)x1 = layers.Activation('relu', name=name + '_1_relu')(x1)x1 = layers.Conv2D(growth_rate, 3, padding='same',use_bias=False, name=name + '_2_conv')(x1)x = layers.Concatenate(axis=bn_axis,name=name+'_concat')([x,x1])return xdef transition_block(x,reduction,name):bn_axis = 3x = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name=name+'_bn')(x)x = layers.Activation('relu',name=name+'_relu')(x)x = layers.Conv2D(int(backend.int_shape(x)[bn_axis] * reduction),1,use_bias=False,name=name+'_conv')(x)x = layers.AveragePooling2D(2,strides=2,name=name+'_pool')(x)return xdef DenseNet(blocks,input_shape=None,classes=1000,**kwargs):img_input = layers.Input(shape=input_shape)bn_axis = 3# 224,224,3 -> 112,112,64x = layers.ZeroPadding2D(padding=((3,3),(3,3)))(img_input)x = layers.Conv2D(64,7,strides=2,use_bias=False,name='conv1/conv')(x)x = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name='conv1/bn')(x)x = layers.Activation('relu',name='conv1/relu')(x)# 112,112,64 -> 56,56,64x = layers.ZeroPadding2D(padding=((1,1),(1,1)))(x)x = layers.MaxPooling2D(3,strides=2,name='pool1')(x)# 56,56,64 -> 56,56,64+32*block[0]# DenseNet121 56,56,64 -> 56,56,64+32*6 == 56,56,256x = dense_block(x,blocks[0],name='conv2')# 56,56,64+32*block[0] -> 28,28,32+16*block[0]# DenseNet121 56,56,256 -> 28,28,32+16*6 == 28,28,128x = transition_block(x,0.5,name='pool2')# 28,28,32+16*block[0] -> 28,28,32+16*block[0]+32*block[1]# DenseNet121 28,28,128 -> 28,28,128+32*12 == 28,28,512x = dense_block(x,blocks[1],name='conv3')# DenseNet121 28,28,512 -> 14,14,256x = transition_block(x,0.5,name='pool3')# DenseNet121 14,14,256 -> 14,14,256+32*block[2] == 14,14,1024x = dense_block(x,blocks[2],name='conv4')# DenseNet121 14,14,1024 -> 7,7,512x = transition_block(x,0.5,name='pool4')# DenseNet121 7,7,512 -> 7,7,256+32*block[3] == 7,7,1024x = dense_block(x,blocks[3],name='conv5')# 加SE注意力机制x = Squeeze_excitation_layer(16)(x)x = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name='bn')(x)x = layers.Activation('relu',name='relu')(x)x = layers.GlobalAveragePooling2D(name='avg_pool')(x)x = layers.Dense(classes,activation='softmax',name='fc1000')(x)inputs = img_inputif blocks == [6,12,24,16]:model = Model(inputs,x,name='densenet121')elif blocks == [6,12,32,32]:model = Model(inputs,x,name='densenet169')elif blocks == [6,12,48,32]:model = Model(inputs,x,name='densenet201')else:model = Model(inputs,x,name='densenet')return modeldef DenseNet121(input_shape=[224,224,3],classes=3,**kwargs):return DenseNet([6,12,24,16],input_shape,classes,**kwargs)def DenseNet169(input_shape=[224,224,3],classes=3,**kwargs):return DenseNet([6,12,32,32],input_shape,classes,**kwargs)def DenseNet201(input_shape=[224,224,3],classes=3,**kwargs):return DenseNet([6,12,48,32],input_shape,classes,**kwargs)from tensorflow.keras.optimizers import Adam# 实例化模型,指定输入形状和类别数
model = DenseNet201(input_shape=[224,224,3], classes=2)
model.summary()
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-7)model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])epochs = 25history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,
)# 获取实际训练轮数
actual_epochs = len(history.history['accuracy'])acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(actual_epochs)plt.figure(figsize=(12, 4))# 绘制准确率
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')# 绘制损失
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')plt.show()

总结:DenseNet与SE-Net(Squeeze-and-Excitation Networks)结合后,能够进一步增强模型的表现力和效率。DenseNet通过密集连接每一层,促进了特征的复用和梯度的流动,而SE-Net通过引入通道注意力机制,能够自动学习每个特征通道的重要性,调整通道的权重。将这两者结合起来,DenseNet负责加强特征之间的关联性和信息流动,而SE-Net则提升了特征通道的自适应能力,使得网络能够在不同任务中更加精准地利用最有用的特征。这样的结合使得模型在保持高效的同时,能够更加聚焦于有价值的特征,从而提升了性能,尤其在处理复杂的视觉任务时,表现尤为出色。
相关文章:
深度学习案例:DenseNet + SE-Net
本文为为🔗365天深度学习训练营内部文章 原作者:K同学啊 一 回顾DenseNet算法 DenseNet(Densely Connected Convolutional Networks)是一种深度卷积神经网络架构,提出的核心思想是通过在每一层与前面所有层进行直接连接…...
excel文件合并,每个excel名称插入excel列
import pandas as pd import os # 设置文件夹路径 folder_path rC:\test # 替换为您的下载文件夹路径 output_file os.path.join(folder_path, BOM材料.xlsx) # 创建一个空的 DataFrame 用于存储合并的数据 combined_data pd.DataFrame() # 遍历文件夹中的所有文件 for …...
Linux 如何设置特殊权限?
简介 通过使用 setuid、setgid 、sticky,它们是 Linux 中的特殊权限,可以对文件和目录的访问和执行方式提供额外的控制。 命令八进制数字功能setuid4当执行文件时,它以文件所有者的权限运行,而不是执行它的用户的权限运行。setg…...
零基础如何使用ChatGPT快速学习Python
引言 AI编程时代来临,没有编程基础可以快速上车享受时代的红利吗?答案是肯定的。本文旨在介绍零基础如何利用ChatGPT快速学习Python编程语言,开启AI编程之路。解决的问题包括:传统学习方式效率低、缺乏互动性以及学习资源质量参差…...
【开源】一款基于SpringBoot 的全开源充电桩平台
一、下载项目文件 下载源码项目文件口令:动作璆璜量子屏多好/~d1b8356ox2~:/复制口令后,进入夸克网盘app即可保存(如果复制到夸克app没有跳转资源,可以复制粘贴口令到夸克app的搜索框也可以打开(不用点搜索按钮&#…...
AI - RAG中的状态化管理聊天记录
AI - RAG中的状态化管理聊天记录 大家好,今天我们来聊聊LangChain和LLM中一个重要的话题——状态化管理聊天记录。在使用大语言模型(LLM)的时候,聊天记录(History)和状态(State)管理是非常关键的。那我们先…...
JAVA安全—SpringBoot框架MyBatis注入Thymeleaf模板注入
前言 之前我们讲了JAVA的一些组件安全,比如Log4j,fastjson。今天讲一下框架安全,就是这个也是比较常见的SpringBoot框架。 SpringBoot框架 Spring Boot是由Pivotal团队提供的一套开源框架,可以简化spring应用的创建及部署。它提…...
【STM32系列】提升ADC采样精度的方法
资料地址 兆易创新GigaDevice-资料下载兆易创新GD32 MCU ADC简介 ADC转换包括采样、保持、量化、编码四个步骤。的采样电容上,即在采样开关 SW 关闭的过程中,外部输入信号通过外部的输入电阻 RAIN 和以及 ADC 采样电阻 RADC 对采样电容 CADC 充电。采样…...
前端面试如何出彩
1、原型链和作用域链说不太清,主要表现在寄生组合继承和extends继承的区别和new做了什么。2、推荐我的两篇文章:若川:面试官问:能否模拟实现JS的new操作符、若川:面试官问:JS的继承 3、数组构造函数上有哪些…...
Linux 切换用户的两种方法
sudo -su user1 与 su - user1 都可以让当前用户切换到 user1 的身份执行命令或进入该用户的交互式 Shell。但它们在权限认证方式、环境变量继承和 Shell 初始化过程等方面存在一些差异。 权限认证方式 su - user1 su 是 “switch user” 的缩写,默认情况下需要你输…...
Spring Boot 3 中Bean的配置和实例化详解
一、引言 在Java企业级开发领域,Spring Boot凭借其简洁、快速、高效的特点,迅速成为了众多开发者的首选框架。Spring Boot通过自动配置、起步依赖等特性,极大地简化了Spring应用的搭建和开发过程。而在Spring Boot的众多核心特性中ÿ…...
Vue实现留言板(实现增删改查)注意:自己引入Vue.js哦
代码: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><scri…...
IDEA创建Spring Boot项目配置阿里云Spring Initializr Server URL【详细教程-轻松学会】
1.首先打开idea选择新建项目 2.选择Spring Boot框架(就是选择Spring Initializr这个) 3.点击中间界面Server URL后面的三个点更换为阿里云的Server URL Idea中默认的Server URL地址:https://start.spring.io/ 修改为阿里云Server URL地址:https://star…...
读取电视剧MP4视频的每一帧,检测出现的每一个人脸并保存
检测效果还不错,就是追踪有点难做 import cv2 import mediapipe as mp import os from collections import defaultdict# pip install msvc-runtime# 初始化OpenCV的MultiTracker # multi_tracker = cv2.MultiTracker_create() # multi_tracker = cv2.legacy.MultiTracker_cre…...
HTML前端开发-- Iconfont 矢量图库使用简介
一、SVG 简介及基础语法 1. SVG 简介 SVG(Scalable Vector Graphics)是一种基于 XML 的矢量图形格式,用于在网页上显示二维图形。SVG 图形可以无限缩放而不会失真,非常适合用于图标、图表和复杂图形。SVG 文件是文本文件&#x…...
使用Allure作为测试报告生成器(Java+Selenium)
背景 JAVA项目中原先用Jenkinsseleniumselenium grid来日常测试UI并记录。 问题 当某一个testSuite失败时,当需要确认UI regression issue还是selenium test case自身的问题,需要去jenkins中查log,一般得到的是“Can not find element xxx…...
RocketMQ面试题合集
消费者获取消息是从Master Broker还是Slave Broker获取? Master Broker宕机,Slave Broker会自动切换为Master Broker吗? 这种Master-Slave模式不是彻底的高可用模式,他没法实现自动把Slave切换为Master。在RocketMQ 4.5之后&…...
Qt初识_对象树
个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 Qt初识_对象树 收录于专栏【Qt开发】 本专栏旨在分享学习Qt的一点学习笔记,欢迎大家在评论区交流讨论💌 目录 什么是对象树 为什么要引…...
axios的get和post请求,关于携带参数相关的讲解一下
在使用 Axios 发送 HTTP 请求时,GET 和 POST 请求携带参数的方式有所不同。以下是关于这两种请求方法携带参数的详细讲解: GET 请求携带参数 对于 GET 请求,参数通常附加在 URL 之后,以查询字符串的形式传递。 直接在 URL 中拼接…...
Vue前端开发-路由其他配置
在路由文件中,除了跳转配置外,还可以进行路径重定向配置,如果没有找到对应的地址,还可以实现404的配置,同时,如果某个页面需要权限登录,还可以进行路由守卫配置,接下来,分…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
