最小二乘法拟合出二阶响应面近似模型
背景:根据样本试验数据拟合出二阶响应面近似模型(正交二次型),并使用决定系数R²和调整的决定系数R²_adj来判断二阶响应面模型的拟合精度。
1、样本数据(来源:硕士论文《航空发动机用W形金属密封环密封性能分析与优化》)
编号 x1 x2 x3 x4 y1 y2 y3
1 0.67 0.70 1.78 0.83 804.8 246.7 37.7
2 0.59 0.73 2.09 0.72 686.3 213.5 40.1
3 0.69 0.78 1.81 0.86 703.6 221.0 39.3
4 0.57 0.70 1.84 0.73 822.3 253.6 37.1
5 0.58 0.80 2.07 0.74 632.4 201.6 40.9
6 0.66 0.77 1.95 0.71 716.9 224.7 39.7
7 0.61 0.69 2.04 0.75 730.1 223.3 39.4
8 0.66 0.83 1.88 0.76 676.6 215.8 40.0
9 0.71 0.66 1.85 0.77 845.0 254.6 37.8
10 0.64 0.72 1.73 0.82 813.2 251.8 37.2
11 0.71 0.71 1.99 0.81 709.0 217.4 40.1
12 0.60 0.77 1.91 0.79 698.2 219.5 39.2
13 0.70 0.65 1.94 0.80 794.9 237.9 38.7
14 0.74 0.74 1.96 0.89 663.2 205.7 40.8
15 0.74 0.67 1.74 0.87 839.3 253.8 37.5
16 0.56 0.68 1.87 0.84 773.6 221.6 37.7
17 0.62 0.84 2.06 0.77 598.0 193.0 41.8
18 0.64 0.72 2.01 0.78 703.4 217.3 39.8
19 0.68 0.79 1.79 0.70 777.5 245.8 38.4
20 0.65 0.84 1.81 0.90 640.6 205.3 40.1
21 0.73 0.75 1.76 0.88 743.3 230.9 38.8
22 0.63 0.82 1.70 0.84 726.0 231.4 38.3
23 0.60 0.83 1.90 0.81 648.0 207.5 40.1
24 0.56 0.76 1.97 0.76 693.6 217.9 39.3
25 0.72 0.81 2.03 0.85 600.7 191.7 42.2
2、将上述数据存放在sample_data.xlsx表格中,再编写matlab代码
% % 读取数据(假设数据已经保存在一个名为'data.txt'的文件中,使用空格或制表符分隔)
%% 近似模型:y = a0+a1*x1+a2*x2+a3*x3+a4*x4+a5*x1*x2+a6*x1*x3+a7*x1*x4+a8*x2*x3+a9*x2*x4+a10*x3*x4+a11*x1^2+a12*x2^2+a13*x3^2+a14*x4^2;
clc;clear;
filename = 'sample_data.xlsx';
data = xlsread(filename);% 提取自变量和因变量
X = data(:, 2:5); % x1, x2, x3, x4
y = data(:, 6:8); % y1, y2, y3% 构建扩展自变量矩阵(包括线性项、交互项和平方项)
[n, m] = size(X);
X_extended = ones(n, 1); % 初始化扩展矩阵,第一列为截距项% 添加线性项
X_extended = [X_extended, X];% 添加交互项
X_extended = [X_extended, X(:,1).*X(:,2), X(:,1).*X(:,3), X(:,1).*X(:,4), ...X(:,2).*X(:,3), X(:,2).*X(:,4), X(:,3).*X(:,4)];% 添加平方项
X_extended = [X_extended, X(:,1).^2, X(:,2).^2, X(:,3).^2, X(:,4).^2];% 使用最小二乘法求解回归系数(对每个因变量分别进行)
beta_values = zeros(15, 3); % 15个系数(包括截距项),3个因变量
R2_values = zeros(1, 3);
adjusted_R2_values = zeros(1, 3);for i = 1:3% 拟合模型beta = (X_extended' * X_extended) \ (X_extended' * y(:, i));beta_values(:, i) = beta;% 预测值y_pred = X_extended * beta;% 计算SST, SSE, SSRSST = sum((y(:, i) - mean(y(:, i))).^2);SSE = sum((y(:, i) - y_pred).^2);SSR = SST - SSE;% 计算R^2R2_values(i) = SSR / SST;% 计算调整后的R^2p = size(X_extended, 2); % 自变量数量(包括截距项)adjusted_R2_values(i) = 1 - (1 - R2_values(i)) * ((n - 1) / (n - p));
end% 显示结果
disp('回归系数(包括截距项):');
disp(beta_values);
disp('决定系数 R^2:');
disp(R2_values);
disp('调整的决定系数 Adjusted R^2:');
disp(adjusted_R2_values);
3、运行结果

4、如上,决定系数和调整的决定系数均大于0.95,可见,近似模型满足精度要求。
相关文章:
最小二乘法拟合出二阶响应面近似模型
背景:根据样本试验数据拟合出二阶响应面近似模型(正交二次型),并使用决定系数R和调整的决定系数R_adj来判断二阶响应面模型的拟合精度。 1、样本数据(来源:硕士论文《航空发动机用W形金属密封环密封性能分析…...
【汽车】-- 常见的汽车悬挂系统
汽车悬挂系统是车辆的重要组成部分,其主要功能是连接车轮和车身,减缓路面颠簸对车身的影响,提高行驶的平顺性、舒适性和操控性。以下是常见的汽车悬挂系统类型及其特点: 1. 独立悬挂系统 每个车轮可以独立上下运动,不…...
VMware Workstation Pro 17 下载 以及 安装 Ubuntu 20.04.6 Ubuntu 启用 root 登录
1、个人免费版本 VMware Workstation Pro 17 下载链接怎么找?直接咕咕 VMware 找到如下链接。链接如下:Workstation 和 Fusion 对个人使用完全免费,企业许可转向订阅 - VMware 中文博客 点进去链接之后你会看到如下,注意安装之后仍…...
记录ubuntu22.04重启以后无法获取IP地址的问题处理方案
现象描述:我的虚拟机网络设置为桥接模式,输入ifconfig只显示127.0.0.1,不能连上外网。,且无法上网,用ifconfig只有如下显示: 1、sudo -i切换为root用户 2、输入dhclient -v 再输入ifconfig就可以看到多了…...
linux 删除系统特殊的的用户帐号
禁止所有默认的被操作系统本身启动的且不需要的帐号,当你第一次装上系统时就应该做此检查,Linux提供了各种帐号,你可能不需要,如果你不需要这个帐号,就移走它,你有的帐号越多,就越容易受到攻击。 1.为删除你系统上的用户,用下面的…...
core Webapi jwt 认证
core cookie 验证 Web API Jwt 》》》》用户信息 namespace WebAPI001.Coms {public class Account{public string UserName { get; set; }public string UserPassword { get; set; }public string UserRole { get; set; }} }》》》获取jwt类 using Microsoft.AspNetCore.Mvc…...
【Redis】Redis基础——Redis的安装及启动
一、初识Redis 1. 认识NoSQL 数据结构:对于SQL来说,表是有结构的,如字段约束、字段存储大小等。 关联性:SQL 的关联性体现在两张表之间可以通过外键,将两张表的数据关联查询出完整的数据。 查询方式: 2.…...
Oracle Recovery Tools工具一键解决ORA-00376 ORA-01110故障(文件offline)---惜分飞
客户在win上面迁移数据文件,由于原库非归档,结果导致有两个文件scn不一致,无法打开库,结果他们选择offline文件,然后打开数据库 Wed Dec 04 14:06:04 2024 alter database open Errors in file d:\app\administrator\diag\rdbms\orcl\orcl\trace\orcl_ora_6056.trc: ORA-01113:…...
常用环境部署(二十四)——Docker部署开源物联网平台Thingsboard
1、Docker和Docker-compose安装 参考网址如下: CENTOS8.0安装DOCKER&DOCKER-COMPOSE以及常见报错解决_centos8安装docker-compose-CSDN博客 2、 Thingsboard安装 (1)在/home目录下创建docker-compose.yml文件 vim /home/docker-com…...
SqlServer Doris Flink SQL 类型映射关系
SqlServer 对应 Flink SQL 数据类型映射关系 SQL Server TypeFlink SQL Typechar(n)CHAR(n)varchar(n)VARCHAR(n)nvarchar(n)VARCHAR(n)nchar(n)VARCHAR(n)textSTRINGntextSTRINGxmlSTRINGdecimal(p, s)DECIMAL(p, s)moneyDECIMAL(p, s)smallmoneyDECIMAL(p, s)numericNUMERIC…...
Java 中的方法重写
在 Java 中,方法重写(Method Overriding)是面向对象编程的一个重要概念,它指的是子类中存在一个与父类中相同名称、相同参数列表和相同返回类型的方法。方法重写使得子类可以提供特定的实现,从而覆盖(或改变…...
v-for遍历多个el-popover;el-popover通过visible控制显隐;点击其他隐藏el-popover
场景:el-popover通过visible控制显隐;同时el-popover是遍历生成的多个。 原文档的使用visible后就不能点击其他地方使其隐藏;同时解决实现点击其他区域隐藏 <template><div><template v-for="(item,index) in arr" :key="index"><…...
从 Excel 文件中读取数据生成 SQL 语句[快捷main方法]
从 Excel 文件中读取数据生成 SQL 语句的实现 在日常工作中,我们经常需要从 Excel 文件中提取数据,并将其转换为 SQL 插入语句,以便于将数据导入到数据库中。在这篇文章中,我将展示如何使用 Java 来实现这一需求。 项目需求 我…...
从0到1实现项目Docker编排部署
在深入讨论 Docker 编排之前,首先让我们了解一下 Docker 技术本身。Docker 是一个开源平台,旨在帮助开发者自动化应用程序的部署、扩展和管理。自 2013 年推出以来,Docker 迅速发展成为现代软件开发和运维领域不可或缺的重要工具。 Docker 采…...
Vue框架入门
Author:Dawn_T17?? 目录 什么是框架 一.Vue 的使用方向 二.Vue 框架的使用场景 (TIP)MVVM思想 三.Vue入门案例 TIP:插值表达式 四.Vue-指令? (1)v-bind 和 v-model? ? (2&#x…...
vue入门实战(二)父子组件显示,参数传递
经过上次的写法,我们已经写出每个list项,现在要在每个父组件下面加入自己的子项 一、新建子组件: smallItem.vue: <script> export default{props:[text,id,status] //父组件传来的参数 } </script> <template>…...
【Linux】Ubuntu:安装系统后配置
hostname:更改主机名 打开终端。 使用hostnamectl命令更改主机名。 sudo hostnamectl set-hostname 新的主机名你可以使用hostnamectl 命令来验证更改是否成功: hostnamectlChrome:更换默认浏览器 以下是从 Ubuntu 中移除预装的 Snap 版 Fi…...
springboot-查看版本和版本所需JDK
文章目录 访问spring管网查看springboot 项目查看当前版本查看版本所需JDK 访问spring管网 https://spring.io/ 查看springboot 项目 查看当前版本 点击调整到参考文档中去… 查看版本所需JDK...
fuxa搭建与使用(web组态)
1. 安装Node.js -> npm安装 参考网址:https://blog.csdn.net/WHF__/article/details/129362462 一、安装运行 C:WINDOWSsystem32>node -v v20.17.0 C:WINDOWSsystem32>npm -v 10.8.2 二、环境配置 在安装路径(D:Program_Files odejs&#x…...
中间件--MongoDB部署及初始化js脚本(docker部署,docker-entrypoint-initdb.d,数据迁移,自动化部署)
一、概述 MongoDB是一种常见的Nosql数据库(非关系型数据库),以文档(Document)的形式存储数据。是非关系型数据库中最像关系型数据库的一种。本篇主要介绍下部署和数据迁移。 在 MongoDB 官方镜像部署介绍中ÿ…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
CSS3相关知识点
CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...
