当前位置: 首页 > news >正文

Python+OpenCV系列:图像的运算

文章目录

      • Python+OpenCV系列:图像的加权和、覆盖
        • 1. 图像加权和(加权融合)
        • 2. 图像覆盖(区域叠加)
        • 3. 应用场景
        • 4. 总结

Python+OpenCV系列:图像的加权和、覆盖

在图像处理中,图像的加权和与覆盖是两种非常常见的操作,广泛应用于图像融合、图像叠加、目标检测、特效制作等场景。Python 和 OpenCV 提供了简单而高效的工具来进行这些操作。在本文中,我们将介绍如何通过加权和操作将两幅图像融合,并通过图像覆盖技术将一幅图像叠加到另一幅图像的特定区域。


1. 图像加权和(加权融合)

图像加权和是将两幅图像按给定的权重进行融合的一种方式。OpenCV 提供了 cv2.addWeighted() 函数来实现这一操作。该函数的基本用法是将两幅图像的像素值按指定比例进行加权组合。

函数原型:

cv2.addWeighted(src1, alpha, src2, beta, gamma)
  • src1src2:输入图像。
  • alphabeta:分别为两幅图像的权重。
  • gamma:常数值,用于调整亮度。

通过调整 alphabeta,可以控制两幅图像的混合程度,而 gamma 则用于调整整体的亮度。

示例代码:

import cv2# 读取两张图像
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')# 调整大小,使两张图像大小一致
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))# 图像加权和
alpha = 0.7
beta = 0.3
gamma = 0
result = cv2.addWeighted(img1, alpha, img2, beta, gamma)# 显示结果
cv2.imshow('Weighted Sum', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这段代码中,我们通过 cv2.addWeighted() 将两张图像按照指定的比例(alpha=0.7beta=0.3)进行加权融合。融合后的结果显示了两张图像的组合。


2. 图像覆盖(区域叠加)

图像覆盖是指将一幅图像嵌入到另一幅图像的特定区域,通常用于图像合成、标志叠加等。使用 OpenCV,通常通过按位运算和区域裁剪来实现这一功能。

思路:

  1. 将目标图像(如一个 logo)裁剪成适当的尺寸。
  2. 在源图像中选择一个区域,将裁剪后的图像覆盖在该区域。
  3. 使用按位运算(如 cv2.bitwise_and())来实现图像的结合。

示例代码:

import cv2
import numpy as np# 读取源图像和覆盖图像
background = cv2.imread('background.jpg')
logo = cv2.imread('logo.png')# 获取 logo 的大小
rows, cols, _ = logo.shape# 在背景图像中选择区域
roi = background[0:rows, 0:cols]# 创建 logo 图像的掩模
logo_gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
_, mask = cv2.threshold(logo_gray, 1, 255, cv2.THRESH_BINARY)# 按位与操作,提取背景区域
background_region = cv2.bitwise_and(roi, roi, mask=cv2.bitwise_not(mask))# 按位与操作,提取 logo 区域
logo_region = cv2.bitwise_and(logo, logo, mask=mask)# 将 logo 区域与背景区域合成
result = cv2.add(background_region, logo_region)# 将合成结果覆盖到背景图
background[0:rows, 0:cols] = result# 显示结果
cv2.imshow('Image with Logo', background)
cv2.waitKey(0)
cv2.destroyAllWindows()

在此示例中,我们通过按位运算提取背景图和 logo 图像的相应区域,并将 logo 覆盖到背景图上。使用 cv2.bitwise_and() 对两幅图像的特定区域进行合成,确保 logo 区域不被背景遮挡。


3. 应用场景
  • 图像加权和

    • 图像融合:将多张图像按权重融合,用于全景图拼接、图像增强等。
    • 视频合成:将多种视频元素按一定权重叠加,生成特效。
  • 图像覆盖

    • 标志叠加:将透明的 logo 或水印叠加到图像上。
    • 图像合成:将多个图像合成成一幅新图像,例如在场景中叠加物体。

4. 总结

图像的加权和与覆盖操作是图像处理中常见的基本方法,广泛应用于图像融合、合成和特效制作中。通过 OpenCV 提供的 cv2.addWeighted() 函数和按位运算,用户可以方便地进行图像加权合成和图像区域覆盖。掌握这些方法,可以有效提升图像处理的灵活性和创意性,应用于各类项目中。

相关文章:

Python+OpenCV系列:图像的运算

文章目录 PythonOpenCV系列:图像的加权和、覆盖1. 图像加权和(加权融合)2. 图像覆盖(区域叠加)3. 应用场景4. 总结 PythonOpenCV系列:图像的加权和、覆盖 在图像处理中,图像的加权和与覆盖是两…...

【Unity技巧】Unity项目中哪些文件不用管理(.gitignore)

Unity的项目编译后一般都比较大,动辙几个G。这里面一般我们只需要把Assets, Packages, ProjectSettings这三个文件夹进行源代码管理就可以,其他文件就可以通过下面的.gitignore来忽略掉。 .gitignore文件的内容如下: # 将此 .gitignore 文件…...

ansible 自动化运维工具(三)playbook剧本

目录 Playbook的定义 Playbook组成 Playbook命令 Playbook剧本编写格式 基本组件 Handlers处理器 tags标签 Facts组件 Register:注册变量 Debug模块 Playbook循环 With_items循环 With_dict循环(字典循环) With_nested循环&…...

图论【Lecode_HOT100】

文章目录 1.岛屿数量No.2002.腐烂的橘子No.9943.课程表No.2074.实现Trie(前缀树)No.208 1.岛屿数量No.200 class Solution {public int numIslands(char[][] grid) {if (grid null || grid.length 0) {return 0;}int numIslands 0;int rows grid.len…...

day10性能测试(2)——Jmeter

【没有所谓的运气🍬,只有绝对的努力✊】 目录 1、LoadRunner vs Jmeter 1.1 LoadRunner 1.2 Jmeter 1.3 对比小结 2、Jmeter 环境安装 2.1 安装jdk 2.2 安装Jmeter 2.3 小结 3、Jmeter 文件目录结构 4、Jmeter默认配置修改 5、Jmeter元件、组…...

Y3编辑器文档4:触发器

文章目录 一、触发器简介1.1 触发器界面1.2 ECA语句编辑及快捷键1.3 参数设置1.4 变量设置1.5 实体触发器1.6 函数库与触发器复用 二、触发器的多层结构2.1 子触发器(在游戏内对新的事件进行注册)2.2 触发器变量作用域2.3 复合条件2.4 循环2.5 计时器2.6…...

1. 机器学习基本知识(3)——机器学习的主要挑战

1.5 机器学习的主要挑战 1.5.1 训练数据不足 对于复杂问题而言,数据比算法更重要但中小型数据集仍然很普遍,获得额外的训练数据并不总是一件轻而易举或物美价廉的事情,所以暂时不要抛弃算法。 1.5.2 训练数据不具有代表性 采样偏差&#…...

prometheusgrafana实现监控告警

Prometheus负责集群数据的监控和采集,然后传递给grafana进行可视化,集成睿象云可实现监控报警,为了方便操作,可以通过iframe嵌套grafana到指定的页面。 文章目录 1.Grafana集成Prometheus2.iframe内嵌grafana3.监控告警 1.Grafana…...

Ubuntu防火墙管理(五)——ufw源规则解读与修改

firewalld与nftables 在 /etc/firewalld/firewalld.conf 文件中,FirewallBackend 选项用于指定 Firewalld 使用的防火墙后端实现。具体来说: nftables:这是当前的默认选项,表示 Firewalld 将使用 nftables 作为防火墙后端。nftab…...

Docker如何运行一个python脚本Hello World

Docker如何运行一个python脚本Hello World 1、编写Python的Hello World:script.py #!/usr/bin/python #_*_coding:utf-8_*_ print("Hello World") 2、Dockerfile文件 #拉取Docker环境 FROM python #设置工作目录 WORKDIR /app #将dockerfile同级文件copy到…...

人工智能-自动驾驶领域

目录 引言自动驾驶与人工智能的结合为什么自动驾驶领域适合发表文章博雅智信的自动驾驶辅导服务结语 引言 自动驾驶技术的崛起是当代交通行业的一场革命。通过结合先进的人工智能算法、传感器技术与计算机视觉,自动驾驶不仅推动了技术的进步,也使得未来…...

[ubuntu18.04]ubuntu18.04安装json-c操作说明

ubuntu18.04安装json-c 代码下载 rootw1804-virtual-machine:/home/w1804/tr069# git clone https://github.com/json-c/json-c.git Cloning into /opt/git/json-c... remote: Enumerating objects: 6398, done. remote: Counting objects: 100% (1067/1067), done. remote:…...

华为eNSP:VRRP

一、VRRP背景概述 在现代网络环境中,主机通常通过默认网关进行网络通信。当默认网关出现故障时,网络通信会中断,影响业务连续性和稳定性。为了提高网络的可靠性和冗余性,采用虚拟路由冗余协议(VRRP)是一种…...

Linux--top系统资源命令查看--详解

top命令用法 图: top命令用法: top命令经常用来监控linux的系统状况,是常用的性能分析工具,能够实时显示系统中各个进程的资源占用情况。 top的使用方式: top [-d number] | top [-bnp] top参数解释: -…...

es的join是什么数据类型

在 Elasticsearch 中,parent 并不是一个独立的数据类型,而是与 join 数据类型一起使用的一个概念。join 数据类型用于在同一个索引中建立父子文档之间的关系,允许你在一个索引内表示层级结构或关联关系。通过 join 字段,你可以定义不同类型的文档(如父文档和子文档),并指…...

KV Shifting Attention Enhances Language Modeling

基本信息 📝 原文链接: https://arxiv.org/abs/2411.19574👥 作者: Mingyu Xu, Wei Cheng, Bingning Wang, Weipeng Chen🏷️ 关键词: KV shifting attention, induction heads, language modeling📚 分类: 机器学习, 自然语言处…...

软错误防护技术在车规MCU中应用

在大气层内,宇宙射线粒子与大气分子发生核反应生成大气中子。大气中子入射微电子器件或电路将会诱发单粒子效应(SEE),效应类型主要有单粒子翻转(SEU)、单粒子瞬态(SET)、单粒子锁定&…...

遥感图像处理二(ENVI5.6 Classic)

1 实验目的和内容 1.1 实验目的 本次上机旨在继续深入了解ENVI软件的基本使用,并对提供的实验数据进行基本的图像分割和地物分类等操作并分析结果。 1.2 实验内容 1.2.1 图像分割 对教材示例数据“C7图像分割”中的风景图、兰花图和娃娃图分别进行图像分割操作…...

经典文献阅读之--A Fast Dynamic Point Detection...(用于驾驶场景中的动态点云剔除方法)

0. 简介 现有的基于3D点的动态点检测和移除方法存在显著的时间开销,使其难以适应激光雷达-惯性测程系统。《A Fast Dynamic Point Detection Method for LiDAR-Inertial Odometry in Driving Scenarios》提出了一种基于标签一致性的动态点检测和移除方法&#xff0…...

百度搜索应适用中文域名国家标准,修复中文网址展示BUG

12月1日中文域名国家标准正式实施。该标准“明确了中文域名在编码、解析、注册、字表等方面的技术要求,适用于中文域名注册管理机构、注册服务机构、网络软硬件服务商及终端用户”。 00:23 显然,百度作为网络软硬件服务商,是包括在国家标准的…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

synchronized 学习

学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

ESP32读取DHT11温湿度数据

芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

基础测试工具使用经验

背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...