NLP论文速读(ICML 2024)|面相对齐大语言模型的迁移和合并奖励模型方法
论文速读|Transforming and Combining Rewards for Aligning Large Language Models
论文信息:

简介:
本文探讨了如何使大型语言模型(LLMs)与人类偏好对齐。传统的对齐方法是先从偏好数据中学习一个奖励模型,然后使用这个奖励模型来更新语言模型。这种方法的背景是,我们希望语言模型的输出具有某些期望的属性,例如有帮助、无害、真实或有创造性。然而,这种方法面临两个主要问题:奖励模型的单调变换如何影响对齐效果,以及如何将多个奖励模型结合起来以对齐到多个属性。
本文的动机是通过概率解释对齐过程来改进语言模型的对齐效果。作者认为,对齐的目标是使模型输出符合特定属性的后验分布。因此,对齐到多个属性的目标是生成在所有属性上都“好”的输出样本。这种概率解释需要定义输出何时被认为是“好”的。在从偏好数据中学习的奖励模型的背景下,作者认为如果输出的奖励值大于某个特定于提示的参考值,则该输出是“好”的。
论文方法:

本文提出了一种称为“LSC-变换”(log-sigmoid-centered transformation)的方法来变换奖励模型。这种方法包括以下步骤:
对齐目标的形式化:首先定义对齐目标,即生成在特定属性上被认为是“好”的输出样本的分布。
奖励变换:作者推导出一种自然的变换选择,即对中心化的奖励应用log-sigmoid函数。这种变换有两个重要属性:
强调改进表现不佳的输出:通过减少非常高奖励值的边际效用,鼓励模型改进表现不佳的提示,并阻止模型通过优化超出奖励模型有效范围的奖励来进行“奖励黑客攻击”。
奖励的合理聚合:通过将变换后的奖励求和来实现逻辑与(AND)操作,即变换后的奖励之和对应于输出在所有测量属性上都是“好”的概率。
论文实验:

Figure 3展示了使用变换后的奖励与未变换的奖励进行对齐时的改进情况。图中比较了两种评估策略下的对齐模型相对于SFT(Supervised Finetuning)模型的胜率。
评估策略包括:
1)使用由PALM-2评估器判断的提示,比较对齐策略和随机SFT样本之间的胜率。
2)使用T5-XXL评估器,与SFT分位数(帮助性为85%,无害性为95%)进行比较的胜率。
结果显示,使用变换后的奖励进行对齐在所有KL距离水平上均优于使用原始奖励进行对齐。
论文链接:
https://arxiv.org/pdf/2402.00742
相关文章:
NLP论文速读(ICML 2024)|面相对齐大语言模型的迁移和合并奖励模型方法
论文速读|Transforming and Combining Rewards for Aligning Large Language Models 论文信息: 简介: 本文探讨了如何使大型语言模型(LLMs)与人类偏好对齐。传统的对齐方法是先从偏好数据中学习一个奖励模型,然后使用这…...
蓝桥杯我来了
最近蓝桥杯报名快要截止了,我们学校开始收费了,我们学校没有校赛,一旦报名缴费就是省赛,虽然一早就在官网上报名了,但是一直在纠结,和家人沟通,和朋友交流,其实只是想寻求外界的支持…...
Vue3+TypeScript+AntVX6实现Web组态(从技术层面与实现层面进行分析)内含实际案例教学
摘要 用Vue3+TypeScript+AntVX6实现Web组态(从技术层面与实现层面进行分析),包含画布创建、节点设计、拖拽实现(实际案例)、节点连线、交互功能,后续文章持续更新。 注:本文章可以根据目录进行导航 文档支持 AntVX6使用文档 https://x6.antv.antgroup.com/tutorial…...
【LeetCode】每日一题 2024_12_13 K 次乘运算后的最终数组 I(暴力)
前言 每天和你一起刷 LeetCode 每日一题~ 小聊两句 1、今天是 12.13 南京大屠杀国家公祭日。铭记历史,勿忘国耻。 2、今天早上去看了 TGA 年度游戏颁奖,小机器人拿下了年度最佳游戏,所有人都震惊了,大伙纷纷问到,谁…...
Plant simulation、Flexsim、Automod、Emulate3D、VisuaComponent仿真软件对比
软件名称物流系统仿真工业布局仿真动画效果数据分析优化虚拟现实/混合现实二次开发虚拟电控和PLC调试 软件行业内特殊功能Emulate3D1.物流设备模块完备,功能灵活设置,涵盖各种设备形态和运作方式 2.唯一将摩擦力、重力、阻力等物理属性融入到物流运动中&…...
深度学习day4|用pytorch实现猴痘病识别
🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊 🍺要求: 训练过程中保存效果最好的模型参数。 加载最佳模型参数识别本地的一张图片。 调整网络结构使测试集accuracy到达88%&#x…...
批量导出工作簿中高清图片-Excel易用宝
我同事在工作簿中做了三个图表,现在需要将工作簿中的图标导出保存为高清图片,通过右键另存为保存的图片并非高清图片,其实要把Excel工作簿中的图表或图片对象导出为高清图片也很简单。 单击Excel易用宝 Plus,导出高清图片。 在导出…...
外观模式的理解和实践
外观模式(Facade Pattern)是一种常用的软件设计模式,它提供了一个统一的接口,用来访问子系统中的一群接口。该模式定义了一个高层的接口,使得子系统更容易使用。简单来说,外观模式就是通过引入一个外观角色…...
linux离线安装部署redis
版本信息 linux版本:CentOS-7-x86_64 redis版本:redis-6.2.6 VMware:VMware-workstation-full-16.1.1 xshell: Xshell-7.0 安装 1.查看当前虚拟机ip命令:ifconfig -a 2.xhell连接虚拟机 ,在xshell页面点击文件-…...
网管平台(基础篇):路由器的介绍与管理
路由器简介 路由器(Router)是一种计算机网络设备,它的主要作用是将数据通过打包,并按照一定的路径选择算法,将网络传送至目的地。路由器能够连接两个或更多个网络,并根据信道的情况自动选择和设定路由&…...
数据结构——跳表
目录 1.什么是跳表-skiplist 2.skiplist的效率如何保证? 3.skiplist的实现 4.skiplist跟平衡搜索树和哈希表的对比 1.什么是跳表-skiplist skiplist本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是一样的…...
活动预告 |【Part2】Microsoft Azure 在线技术公开课:基础知识
课程介绍 参加“Azure 在线技术公开课:基础知识”活动,培养有助于创造新的技术可能性的技能并探索基础云概念。参加我们举办的本次免费培训活动,扩充自身的云模型和云服务类型知识。你还可以查看以计算、网络和存储为核心的 Azure 服务。 课…...
PyCharm如何导入库( 包 )
目录 1.在主界面中导库 2.用设置->项目安装库 2.1.使用右上方按钮 2.2.使用右下方Python解释器 3.使用左下角终端导库 1.在主界面中导库 在主界面输入导库后等待一会儿,会在那一行出现一个红色灯。 图1 红色灯 我们点击红色灯,会出现 图2 错误选…...
【DevOps基础篇】SCM(Source Code Management)
目录 代码管理工具Git特点:SVN特点:Git与SVN的对比:Git 的开发工作流程(flow)的设计Git Flow主要特点:工作流程:GitHub Flow主要特点:工作流程:两种Flow的对比:推荐超级课程: Docker快速入门到精通Kubernetes入门到大师通关课AWS云服务快速入门实战代码管理工具 Gi…...
DDS—RTPS一致性测试案例分析
1 往期回顾 通过《DDS数据分发服务—提升汽车领域数据传输效率》和《DDS—DCPS测试策略介绍及实际案例分析》这两篇文章的介绍,相信广大读者对Data Distribution Service(DDS)协议和Data Centric Publish Subscribe(DCPS)测试有了基本了解:DDS协议致力于…...
【深度学习入门】深度学习介绍
1.1 深度学习介绍 学习目标 目标 知道深度学习与机器学习的区别了解神经网络的结构组成知道深度学习效果特点 应用 无 区别 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识深度学习通常由多个层组成,它们通常将更简…...
数值分析—非线性方程的数值解
研究背景 形如 x − t a n x 0 x-tanx0 x−tanx0、 x l n x e − x 2 s i n x 0 xlnxe^{-x^2}sinx0 xlnxe−x2sinx0等称为非线性方程,自变量之间并非简单的线性关系,这种问题我们无法通过其结构求解,需要其他的逼近方式,本章…...
LDR6500应用:C转DP线材双向投屏开启全新体验
在当今这个科技日新月异、蓬勃发展的时代,高清视频传输以及显示技术已经深深融入到我们日常生活与工作的方方面面,其重要性不言而喻。不管是在商务场合的会议演示,还是教育领域的娱乐享受,以及充满激情的游戏竞技领域,…...
路径规划之启发式算法之十六:和声搜索算法(Harmony Search, HS)
和声搜索算法(Harmony Search, HS)是一种新兴的启发式全局搜索算法,是一种模拟音乐家即兴演奏过程的群体智能优化算法。这种算法由Zong Woo Geem等人在2001年提出,灵感来源于音乐家在寻找和声时的创造性思维过程。HS算法通过模拟音乐家演奏音乐时的选择过程来寻找问题的最优…...
Redis - 实战之 全局 ID 生成器 RedisIdWorker
概述 定义:一种分布式系统下用来生成全局唯一 ID 的工具 特点 唯一性,满足优惠券需要唯一的 ID 标识用于核销高可用,随时能够生成正确的 ID高性能,生成 ID 的速度很快递增性,生成的 ID 是逐渐变大的,有利于…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
macOS 终端智能代理检测
🧠 终端智能代理检测:自动判断是否需要设置代理访问 GitHub 在开发中,使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新,例如: fatal: unable to access https://github.com/ohmyzsh/oh…...
倒装芯片凸点成型工艺
UBM(Under Bump Metallization)与Bump(焊球)形成工艺流程。我们可以将整张流程图分为三大阶段来理解: 🔧 一、UBM(Under Bump Metallization)工艺流程(黄色区域ÿ…...
leetcode73-矩阵置零
leetcode 73 思路 记录 0 元素的位置:遍历整个矩阵,找出所有值为 0 的元素,并将它们的坐标记录在数组zeroPosition中置零操作:遍历记录的所有 0 元素位置,将每个位置对应的行和列的所有元素置为 0 具体步骤 初始化…...
Tauri2学习笔记
教程地址:https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引:https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多,我按照Tauri1的教程来学习&…...
