当前位置: 首页 > news >正文

linux下socket本地套接字通讯

        使用套接字除了可以实现网络间不同主机间的通信外,还可以实现同一主机的不同进程间的通信,且建立的通信是双向的通信。socket进程通信与网络通信使用的是统一套接口,只是地址结构与某些参数不同。        

用途

  1. 进程间通信:本地套接字允许在同一台主机上的不同进程之间进行数据传输,类似于管道(pipe)和命名管道(FIFO),但提供了更灵活和通用的解决方案。
  2. 资源共享:通过本地套接字,进程可以共享数据、文件或设备等资源,实现进程间的协同工作。
  3. 服务间交互:在分布式系统或微服务架构中,本地套接字可以用于服务间的本地通信,提高服务间的交互效率和可靠性。

应用场景

  1. 数据库服务:数据库服务器和客户端进程通常运行在同一台主机上,通过本地套接字进行通信,实现数据的查询、插入、更新和删除等操作。
  2. 中间件服务:在分布式系统中,中间件服务(如消息队列、缓存服务等)通常与应用程序运行在同一台主机上,通过本地套接字进行通信,实现数据的传递和处理。
  3. 调试和测试:在软件开发过程中,开发人员可以使用本地套接字在本地环境中模拟网络通信,进行调试和测试工作,提高开发效率和质量。
  4. 本地进程监控和管理:系统管理工具可以使用本地套接字监控和管理本地进程,如获取进程状态、终止进程等。

优点

  1. 高效性:由于本地套接字不涉及网络通信,因此数据传输速度更快,延迟更低。
  2. 可靠性:本地套接字提供了稳定的进程间通信机制,避免了网络通信中的不确定性和延迟。
  3. 安全性:由于数据在本地主机上传输,因此安全性更高,不易受到网络攻击和窃听。

本地套接字与普通套接字开发上的主要差异

  1. 协议族:本地套接字使用AF_UNIX,而普通套接字使用AF_INET(IPv4)或AF_INET6(IPv6)。

  2. 地址结构体:本地套接字使用struct sockaddr_un,而普通套接字使用struct sockaddr_in(IPv4)或struct sockaddr_in6(IPv6)。

  3. 套接字文件:本地套接字在文件系统中创建一个套接字文件(如/tmp/unix_socket),而普通套接字则使用IP地址和端口号进行通信。

  4. 通信范围:本地套接字仅限于同一台计算机上的进程间通信,而普通套接字可以在网络上的不同计算机之间进行通信。

  5. 性能:本地套接字由于不经过网络协议栈,通常具有更低的延迟和更高的吞吐量。

  6. 安全性:本地套接字由于通信双方在同一台计算机上,相对更安全,但也需要注意文件系统的权限设置。普通套接字则可能面临网络攻击的风险,需要采取适当的安全措施。

 

完整例子如下:不解释了。

service:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>#define SOCKET_PATH "/tmp/unix_socket"
#define BUFFER_SIZE 1024int main() {int server_fd, new_socket;struct sockaddr_un address;int addrlen = sizeof(address);char buffer[BUFFER_SIZE] = {0};int opt = 1;int addrlen_size;// 创建套接字if ((server_fd = socket(AF_UNIX, SOCK_STREAM, 0)) == 0) {perror("socket failed");exit(EXIT_FAILURE);}// 设置套接字选项,允许重用地址和端口if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) {perror("setsockopt");close(server_fd);exit(EXIT_FAILURE);}// 清除地址结构memset(&address, 0, sizeof(struct sockaddr_un));// 设置地址和端口address.sun_family = AF_UNIX;strncpy(address.sun_path, SOCKET_PATH, sizeof(address.sun_path) - 1);// 绑定套接字到地址if (bind(server_fd, (struct sockaddr *)&address, sizeof(struct sockaddr_un)) < 0) {perror("bind failed");close(server_fd);exit(EXIT_FAILURE);}// 监听连接if (listen(server_fd, 3) < 0) {perror("listen");close(server_fd);unlink(SOCKET_PATH); // 删除套接字文件exit(EXIT_FAILURE);}// 接受客户端连接if ((new_socket = accept(server_fd, (struct sockaddr *)&address, (socklen_t*)&addrlen_size)) < 0) {perror("accept");close(server_fd);unlink(SOCKET_PATH); // 删除套接字文件exit(EXIT_FAILURE);}// 读取客户端发送的数据int valread = read(new_socket, buffer, BUFFER_SIZE);printf("Received: %s\n", buffer);// 发送响应给客户端char *hello = "Hello from server";send(new_socket, hello, strlen(hello), 0);printf("Hello message sent\n");// 关闭套接字close(new_socket);close(server_fd);unlink(SOCKET_PATH); // 删除套接字文件return 0;
}

client:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>#define SOCKET_PATH "/tmp/unix_socket"
#define BUFFER_SIZE 1024int main() {int sock = 0;struct sockaddr_un serv_addr;char buffer[BUFFER_SIZE] = {0};char *hello = "Hello from client";// 创建套接字if ((sock = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {perror("Socket creation error");return -1;}serv_addr.sun_family = AF_UNIX;strcpy(serv_addr.sun_path, SOCKET_PATH);// 连接服务端if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(struct sockaddr_un)) < 0) {perror("Connection Failed");return -1;}// 发送数据到服务端send(sock, hello, strlen(hello), 0);printf("Hello message sent\n");// 读取服务端的响应int valread = read(sock, buffer, BUFFER_SIZE);printf("Received: %s\n", buffer);// 关闭套接字close(sock);return 0;
}

 其余自己脑补去。

相关文章:

linux下socket本地套接字通讯

使用套接字除了可以实现网络间不同主机间的通信外&#xff0c;还可以实现同一主机的不同进程间的通信&#xff0c;且建立的通信是双向的通信。socket进程通信与网络通信使用的是统一套接口&#xff0c;只是地址结构与某些参数不同。 用途 进程间通信&#xff1a;本地套…...

NDRCContextUnmarshall断点函数分析之I_RpcBindingCopy函数的作用

NDRCContextUnmarshall断点函数分析之I_RpcBindingCopy函数的作用 第一部分&#xff1a; void RPC_ENTRY NDRCContextUnmarshall ( // process returned context OUT NDR_CCONTEXT PAPI *phCContext,// stub context to update IN RPC_BINDING_HANDLE hRPC, …...

WebView2教程(基于C++)【一】环境初始化

创建一个VisualStudio C项目&#xff0c;通过NuGet包管理器安装两个包&#xff1a; 注意&#xff0c;在项目属性页设置项目使用&#xff1a;C 20&#xff0c;子系统设置成窗口&#xff08;相应的预处理器也要改变&#xff09;&#xff0c;DPI识别设置成每个监视器高DPI识别。 …...

go语言中context的用法

0 概述 Context 是 Go 语言中非常重要的一个概念&#xff0c;它主要用于跨多个函数或 goroutine 传递 取消信号、超时控制、截止时间 和 请求范围数据。在并发编程中&#xff0c;Context 提供了更好的控制和管理&#xff0c;尤其是当你需要在多个 goroutine 之间传递状态或进行…...

概括网络给社会生活带来的种种影响

题目 【2002年国考申论】给定资料反映了网络给社会生活带来的种种影响&#xff0c;用不超过200字对这些影响进行概括。 要求&#xff1a;全面&#xff0c;有条理&#xff0c;有层次。(20分) 审题 特定事实&#xff1a;网络给社会生活带来的种种影响基本题型&#xff1a;单一…...

OpenCV相机标定与3D重建(16)将点从齐次坐标转换为非齐次坐标函数convertPointsFromHomogeneous()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::convertPointsFromHomogeneous 是 OpenCV 库中的一个函数&#xff0c;用于将点从齐次坐标&#xff08;homogeneous coordinates&#xff09;…...

Jmeter如何对UDP协议进行测试?

Jmeter如何对UDP协议进行测试&#xff1f; 1 jmeter-plugins安装2 UDP-Protocol Support安装3 UDP协议测试 1 jmeter-plugins安装 jmeter-plugins是Jmeter的插件管理器&#xff1b;可以组织和管理Jmeter的所有插件&#xff1b;直接进入到如下页面&#xff0c;选择如图的选项进…...

Unix 传奇 | 谁写了 Linux | Unix birthmark

注&#xff1a;本文为 “左耳听风”陈皓的 unix 相关文章合辑。 皓侠已走远&#xff0c;文章有点“年头”&#xff0c;但值得一阅。 文中部分超链已沉寂。 Unix 传奇 (上篇) 2010 年 04 月 09 日 陈皓 了解过去&#xff0c;我们才能知其然&#xff0c;更知所以然。总结过去…...

【网络】传输层协议UDP/TCP网络层IP数据链路层MACNAT详解

主页&#xff1a;醋溜马桶圈-CSDN博客 专栏&#xff1a;计算机网络原理_醋溜马桶圈的博客-CSDN博客 gitee&#xff1a;mnxcc (mnxcc) - Gitee.com 目录 1.传输层协议 UDP 1.1 传输层 1.2 端口号 1.3 UDP 协议 1.3.1 UDP 协议端格式 1.3.2 UDP 的特点 1.3.3 面向数据报 1…...

RTMP推流平台EasyDSS在无人机推流直播安防监控中的创新应用

无人机与低空经济的关系密切&#xff0c;并且正在快速发展。2024年中国低空经济行业市场规模达到5800亿元&#xff0c;其中低空制造产业占整个低空经济产业的88%。预计未来五年复合增速将达到16.03%。 随着科技的飞速发展&#xff0c;公共安防关乎每一个市民的生命财产安全。在…...

ORACLE逗号分隔的字符串字段,关联表查询

使用场景如下&#xff1a; oracle12 以前的写法&#xff1a; selectt.pro_ids,wm_concat(t1.name) pro_names from info t,product t1 where instr(,||t.pro_ids|| ,,,|| t1.id|| ,) > 0 group by pro_ids oracle12 以后的写法&#xff1a; selectt.pro_ids,listagg(DIS…...

1.5 多媒体系统简介

目录 多媒体系统声音图形与图像动画和视频 多媒体系统 多媒体可分为感觉媒体、表示媒体、表现媒体、交换媒体。 感觉媒体&#xff1a;直接使人产生感觉的媒体&#xff0c;比如声音、图像、视频。表示媒体&#xff1a;计算机中记录感觉的数据格式。表现媒体&#xff1a;记录感觉…...

数据分析学习Day1-使用matplotlib生成2小时每分钟的气温可视化分析图

注意&#xff1a;需要提前下载matplotlib包 pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple import matplotlib.pyplot as plt import random from matplotlib import font_manager # 数据准备 x list(range(121)) # 使用 list() 转换为列表 y [rando…...

ansible部署nginx:1个简单的playbook脚本

文章目录 hosts--ventoryroles执行命令 使用ansible向3台centos7服务器上安装nginx hosts–ventory [rootstand playhook1]# cat /root/HOSTS # /root/HOSTS [webservers] 192.168.196.111 ansible_ssh_passpassword 192.168.196.112 ansible_ssh_passpassword 192.168.196.1…...

三、汇总统计

1.SUM、COUNT、AVERAGE 注意&#xff1a;count函数是计算区域中包含数字的单元格的个数&#xff0c;以上案例中两个空白单元格和一个中文列标题都是没有计算在内的。 平均函数AVERAGE也是按照17进行求平均值的。所以在使用平均值的函数时候&#xff0c;可以根据实际情况看是…...

opencv实现给图像加上logo图像

要用Python和OpenCV给图片加上logo&#xff0c;可以按照以下步骤实现&#xff1a; 读取logo和image图片。 调整logo的大小以适应image。 将logo放置在image的指定位置。 将logo和image合并。 以下是实现代码&#xff1a; import cv2# 读取logo和image图片 logo cv2.imre…...

亚马逊云科技2024 re:Invent大会亮点:Nova大模型与AI基础设施全面升级

引言 作为云计算领域的年度盛会,亚马逊云科技(AWS)的re:Invent大会一直是业界瞩目的焦点。2024年的大会不负众望,推出了一系列重磅产品和服务,尤其是在人工智能和大模型方面的创新令人印象深刻。本文将为您深入解析此次大会的主要亮点,探讨AWS在AI时代的最新布局及其对行业的潜…...

总结与提升

今天学习了ai&#xff0c;对今天学习的内容进行总结。 本文参考chat gpt-4的训练文献。 模型架构基础 Transformer 架构&#xff1a;ChatGPT 采用了 Transformer 架构&#xff0c;这是一种基于自注意力机制的深度学习模型架构。它能够并行计算文本中的长期依赖关系&#xff…...

入门pytorch-Transformer

前言 虽然Transformer是2017年由Google推出&#xff0c;如果按照读论文只读近两年的思路看&#xff0c;那它无疑是过时的&#xff0c;但可惜的是&#xff0c;目前很多论文的核心依然是Transformer&#xff0c;或者由其进行改进的&#xff0c;故本文使用pytorch来搭建一下Trans…...

泛型编程--

auto自动推导数据类型 函数模板 定义和调用 函数模板具体化 函数模板通用版本之外的一个特殊版本 函数模板 具体化函数 &#xff0c;它们的声明和定义都可以分开写。 声明 定义 函数模板写变量 模板参数缺省 类成员函数作为函数模板 类构造函数是函数模板 函数模板重载 函数模…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存&#xff0c;但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程&#xff0c;可以参考这篇文章&#xff0c;我觉得写的非常…...

边缘计算网关提升水产养殖尾水处理的远程运维效率

一、项目背景 随着水产养殖行业的快速发展&#xff0c;养殖尾水的处理成为了一个亟待解决的环保问题。传统的尾水处理方式不仅效率低下&#xff0c;而且难以实现精准监控和管理。为了提升尾水处理的效果和效率&#xff0c;同时降低人力成本&#xff0c;某大型水产养殖企业决定…...

起重机起升机构的安全装置有哪些?

起重机起升机构的安全装置是保障吊装作业安全的关键部件&#xff0c;主要用于防止超载、失控、断绳等危险情况。以下是常见的安全装置及其功能和原理&#xff1a; 一、超载保护装置&#xff08;核心安全装置&#xff09; 1. 起重量限制器 功能&#xff1a;实时监测起升载荷&a…...

ZYNQ学习记录FPGA(二)Verilog语言

一、Verilog简介 1.1 HDL&#xff08;Hardware Description language&#xff09; 在解释HDL之前&#xff0c;先来了解一下数字系统设计的流程&#xff1a;逻辑设计 -> 电路实现 -> 系统验证。 逻辑设计又称前端&#xff0c;在这个过程中就需要用到HDL&#xff0c;正文…...