python pandas 优化内存占用(一)
最近我用python处理excel,使用的是pandas库,我发现pandas库非常占用内存,一直想研究下如何优化pandas的内存占用,但一直没腾出空来,最近终于有时间研究一把了,我先把优化方法写上,如果你想了解更多的内容,可以看一下XX这篇文章,我优化的思路来源https://www.sohu.com/a/484114754_121124370这篇文章。
以下直接提供了优化方法,如果你想知道为什么这么做,可以参考我的另一篇文章链接: python pandas 优化内存占用(二)
1.优化结果
1.1 优化前
我优化的是一个20万行,88列的excel文件,源文件有76.59M,因为业务敏感性的原因,源文件我不能贴出来。
先看一下优化之前excel占用了多少内存
# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 200000 entries, 0 to 199999
# Data columns (total 88 columns):
# # Column Non-Null Count Dtype
# --- ------ -------------- -----
# 0 column0 200000 non-null int64
# 1 column1 200000 non-null object
# 2 column2 200000 non-null int64
......
# 85 column85 199963 non-null float64
# 86 column86 199963 non-null object
# 87 column87 199963 non-null float64
# dtypes: float64(14), int64(3), object(71)
# memory usage: 965.9 MB
上面的输出我精简了一下,从上边的输出可以看出,我的excel文件有200000行,88列,其中有14个float64类型的列,3个int64类型的列,71个ojbect类型的列,总共占用内存965.9M。
上面的输出是使用如下的代码得到的。
gl.info(memory_usage='deep')
1.2 优化后
# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 200000 entries, 0 to 199999
# Data columns (total 88 columns):
# # Column Non-Null Count Dtype
# --- ------ -------------- -----
# 0 column0 200000 non-null uint64
# 1 column1 200000 non-null object
# 2 column2 200000 non-null uint64
......
# 84 是否小区 199963 non-null category
# 85 column85 199963 non-null category
# 86 column86 199963 non-null category
# 87 column87 199963 non-null category
# dtypes: category(81), object(5), uint64(2)
# memory usage: 143.8 MB
同样,我把优化后的输出也精简了一下,从上边的输出可以看出,我这个200000行,88列的excel文件优化后占用内存143.8M,优化效果还是非常明显的。
细心的小伙伴可能注意到一个问题,优化后,我的execl文件的列类型变化了,优化前有14个float64类型的列,3个int64类型的列,71个ojbect类型的列;优化后变成了81个category类型的列,5个object类型列,2个uint64类型的列。没错,正如你看到的,这就是优化的秘密,为什么这样可以优化内存使用,可以参看我的另一篇文章,下面我讲一下我是如何做到的。
2. 优化方法
正如小伙伴在上文中看到的,要想优化excel的内存占用大小,一个重要的思路是改变excel的列类型,如何获取优化后的列类型呢,代码如下
import pandas as pd
# 把excel中的数据类型转化成优化后的数据类型
def convert_to_right_type():# 读取文件gl = pd.read_excel("xx.xlsx")# 初始化一个DataFrameconverted_obj = pd.DataFrame()# 计算哪些列类型可以转换成category类型for col in gl.columns:num_unique_values = len(gl[col].unique())num_total_values = len(gl[col])if num_unique_values / num_total_values < 0.5:converted_obj.loc[:, col] = gl[col].astype('category')else:converted_obj.loc[:, col] = gl[col]# 计算哪些int类型列可以downcast成子类型gl_int = converted_obj.select_dtypes(include=['int'])converted_int = gl_int.apply(pd.to_numeric, downcast='unsigned')# 将转换后的int类型列合并回converted_objfor col in converted_int.columns:converted_obj[col] = converted_int[col]# 计算哪些float类型列可以downcast成子类型gl_float = converted_obj.select_dtypes(include=['float'])converted_float = gl_float.apply(pd.to_numeric, downcast='float')# 将转换后的 float 类型列合并回converted_objfor col in converted_float.columns:converted_obj[col] = converted_float[col]# 获取数据类型索引(索引是列名,值是数据类型)dtypes = converted_obj.dtypes# 获取列名dtypes_col = dtypes.index# 获取数据类型的名称dtypes_type = [i.name for i in dtypes.values]# 列名和类型字典column_types = dict(zip(dtypes_col, dtypes_type))# preview = {key: value for key, value in list(column_types.items())[:20]}# 获取字典preview = {key: value for key, value in list(column_types.items())}# 格式化输出, 使每个嵌套层级的缩进量为4个空格pp = pprint.PrettyPrinter(indent=4)# 打印字典pp.pprint(preview)
这段儿代码的输出类似如下:
column_types = {'column1': 'category','column2': 'uint64','column3': 'object','column4': 'uint64','column5': 'category'}
column_type 是个字典,它的key是excel文件的列名称,value是excel文件列对应的优化后的类型。
在读取excel的时候,指定excel的dtype,即可按照指定的列类型读取excel,类似这样
gl = pd.read_excel("XX.xlsx", dtype=column_types)
3. 测试方法
我是用如下的代码测试excel占用内存的大小的
# 测试内存占用
def mem_usage(pandas_obj):if isinstance(pandas_obj, pd.DataFrame):usage_b = pandas_obj.memory_usage(deep=True).sum()else: # we assume if not a df it's a seriesusage_b = pandas_obj.memory_usage(deep=True)usage_mb = usage_b / 1024 ** 2 # convert bytes to megabytesreturn "{:03.2f} MB".format(usage_mb)
相关文章:
python pandas 优化内存占用(一)
最近我用python处理excel,使用的是pandas库,我发现pandas库非常占用内存,一直想研究下如何优化pandas的内存占用,但一直没腾出空来,最近终于有时间研究一把了,我先把优化方法写上,如果你想了解更…...

FutureCompletableFuture实战
1. Callable&Future&FutureTask介绍 直接继承Thread或者实现Runnable接口都可以创建线程,但是这两种方法都有一个问题就是:没有返回值,也就是不能获取执行完的结果。因此java1.5就提供了Callable接口来实现这一场景,而Fu…...

Loki 微服务模式组件介绍
目录 一、简介 二、架构图 三、组件介绍 Distributor(分发器) Ingester(存储器) Querier(查询器) Query Frontend(查询前端) Index Gateway(索引网关)…...
peerDependencies对等依赖
在 package.json 中平时常用的有字段有 dependencies 和 devDependencies,但 peerDependencies 平时都没咋看到过,今天具体讲讲 peerDependencies 的作用 一、什么是对等依赖 peerDependencies 可以翻译为“对等依赖”或“同行依赖”。这个术语在 npm …...

贪心算法 part01
class Solution { public:int maxSubArray(vector<int>& nums) {int result INT32_MIN;int count 0;for (int i 0; i < nums.size(); i) {count nums[i];if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置ÿ…...

java开发入门学习二 - 变量
目录 一 关键字 编辑 二 标识符 三 变量 变量数据类型 变量注意点 四 数据类型 前置知识 - 计算机存储单位 整型数据类型 浮点数据类型 字符数据类型 布尔数据类型 五 数据类型间的计算 基本数据类型之间的计算 自动类型提升 强制类型转换 引用数据类型 Sti…...
Qt Q_ENUM enum 转 QString 枚举字符串互转; C++模板应用
Part1: Summary 项目中我们常用到命名,使用 enum 转成 string ,方便简洁;Qt给我们提供了一个很方便的功能 Q_ENUM,可以实现枚举字符串互转; Q_ENUM宏将枚举注册到元对象系统中; QMetaEnum::fromType获取枚…...

0004.基于springboot+elementui的在线考试系统
适合初学同学练手项目,部署简单,代码简洁清晰; 愿世界和平再无bug 一、系统架构 前端:vue| elementui 后端:springboot | mybatis-plus 环境:jdk1.8 | mysql | maven 二、登录角色 1.管理员 2.老师 …...

基于 iAP2 协议 的指令协议,用于对安防设备的 MCU 进行操作
协议设计目标 1. 安全性:通过 iAP2 协议与 MCU 设备进行安全通信。 2. 通用性:支持对安防设备的常见功能进行操作,如状态查询、设备控制、参数配置等。 3. 高效性:数据结构简洁清晰,易于解析和扩展。 4. 扩展性&#x…...

02-5.python入门基础一控制流(while)
Python 控制流是指控制程序执行顺序的机制,它允许程序根据不同的条件和情况执行不同的代码块或重复执行某些代码。 while 循环的用法与示例 语法结构及要点 在 Python 中,while循环是一种基于条件判断的循环结构,其语法构成如下:…...
Go语言开发入门与实战
Go语言(简称Golang)由Google开发,是一门现代化的编程语言,因其简洁高效、并发支持友好、跨平台特性而在后端服务开发、云计算等领域大放异彩。本文将介绍Go语言的基本特点、开发环境配置,并通过一个简单的实战项目带领大家快速上手。 一、Go语言的特点 简单易学:语法简洁…...
HarmonyOS Next应用开发实战:ArkWeb组件使用介绍及使用举例
ArkWeb简介 ArkWeb(方舟Web)是HarmonyOS Next中提供的一个Web组件,主要用于在应用程序中显示Web页面内容。这个组件使得开发者可以在HarmonyOS应用中嵌入Web页面,从而降低开发成本,提升开发和运营效率。 使用场景 A…...

【已解决】在Visual Studio里将应用与Microsoft Store关联时提示网络异常
发布Windows应用时。在Visual Studio里点击"发布“,将应用与Microsoft Store关联时,一直提示网络错误。 查了一下论坛,发现之前也经常出现,但我是第一次遇到。 不能就这样一直被卡着呀,研究了一下,还…...

springcloud-gateway获取应用响应信息乱码
客户端通过springcloud gateway跳转访问tongweb上的应用,接口响应信息乱码。使用postman直接访问tongweb上的应用,响应信息显示正常。 用户gateway中自定义了实现GlobalFilter的Filter类,在该类中获取了上游应用接口的响应信息,直…...

[笔记]关于Qt的nativeEvent事件无法接收window消息的Bug
1.nativeEvent事件无法接收window消息 此处不是nativeEvent不能接收,是possmessage一定要写对发送的软件名称,这个名称在Qt中是主界面类的名称,就是主界面UI的名称,而不是rc文件中定义的名称。 所以在FindWindow函数获取目标窗口…...

LeetCode 热题 100_K 个一组翻转链表(31_25_困难_C++)(四指针法)
LeetCode 热题 100_K 个一组翻转链表(31_25) 题目描述:输入输出样例:题解:解题思路:思路一(四指针法): 代码实现代码实现(思路一(四指针法&#x…...

Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类 CIFAR10数据集MobileNet设计理念网络结构技术优势应用领域 MobileNet结构代码详解结构代码代码详解DepthwiseSeparableConv 类初始化方法前向传播 forward 方法 MobileNet 类初始化方法前向传播 forward 方法 训练和测试训练代码…...
CSS系列(18)-- 工程化实践详解
前端技术探索系列:CSS 工程化实践详解 🏗️ 致读者:探索 CSS 工程化之路 👋 前端开发者们, 今天我们将深入探讨 CSS 工程化实践,学习如何在大型项目中管理 CSS。 工程化配置 🚀 项目结构 …...
日拱一卒(18)——leetcode学习记录:二叉树中的伪回文路径
一、题目 给你一棵二叉树,每个节点的值为 1 到 9 。我们称二叉树中的一条路径是 「伪回文」的,当它满足:路径经过的所有节点值的排列中,存在一个回文序列。 请你返回从根到叶子节点的所有路径中 伪回文 路径的数目。 二、思路 …...

hive—炸裂函数explode/posexplode
1、Explode炸裂函数 将hive某列一行中复杂的 array 或 map 结构拆分成多行(只能输入array或map) 语法: select explode(字段) as 字段命名 from 表名; 举例: 1)explode(array)使得结果中将array列表里的每个元素生…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...