当前位置: 首页 > news >正文

数据可视化-1. 折线图

目录

1. 折线图适用场景分析

1. 1 时间序列数据展示

1.2 趋势分析

1.3 多变量比较

1.4 数据异常检测

1.5 简洁易读的数据可视化

1.6 特定领域的应用

2. 折线图局限性

3. 折线图代码实现

3.1 Python 源代码

3.2 折线图效果(网页显示)


1. 折线图适用场景分析

        在数据分析中,折线图是一种常用的可视化工具,它主要用于以下场景:

1. 1 时间序列数据展示

        折线图能够清晰地展示数据随时间的变化趋势,可以帮助用户快速了解数据在不同时间点的走势,从而进行趋势分析和预测。通过观察折线的走势,可以直观地了解数据随时间的波动和变化模式,例如季节性变化或周期性波动。

1.2 趋势分析

        折线图也适合用于展示数据的趋势,比如随着某个变量的增加或减少,另一个变量如何响应。通过观察折线的斜率,可以判断数据变化的快慢程度。同时,折线图还能体现数据变化的幅度,从而帮助用户识别数据的长期趋势和短期波动。

1.3 多变量比较

        当需要比较多个类别的数据趋势时,折线图也是一个有效的工具。通过在同一张图表上绘制多条折线,可以直观地展示不同类别的数据变化情况,便于进行对比和分析。例如,在市场营销中,企业可以使用折线图来比较不同产品的销售趋势,从而发现哪些产品的销售表现较好,哪些产品需要改进。

1.4 数据异常检测

        通过观察折线图中的数据点分布,用户可以识别出数据中的异常值或异常波动。这些异常值或波动可能代表数据中的错误、噪声或特殊事件,需要用户进一步分析和处理。

1.5 简洁易读的数据可视化

        折线图的结构相对简单,由坐标轴和折线组成,易于理解和解读。不需要过多的装饰和复杂的图形元素,就能传达清晰的信息。即使对于不具备专业数据分析知识的人来说,也能快速从折线图中获取关键信息。

1.6 特定领域的应用

  • 金融:在金融市场中,折线图被广泛用于展示股票价格、汇率等的变化情况。通过观察折线图的走势,投资者可以判断市场的趋势,从而做出相应的投资决策。
  • 商业:企业可以通过折线图来分析销售数据、网站流量等,以便及时调整营销策略。
  • 气象学:气象学家可以使用折线图来分析气温、降水量等的变化趋势,以便预测未来的天气情况。
  • 医疗健康:医生可以使用折线图来跟踪患者的体温、血压、血糖等指标的变化情况,从而及时调整治疗方案。在公共卫生管理中,卫生部门可以通过折线图来分析传染病的发病率变化,制定相应的防控措施。
  • 环境监测:通过折线图,可以直观地展示空气质量、水质、噪声等环境指标的变化情况,帮助环保部门及时发现环境问题。
  • 交通流量监测:通过折线图,可以展示不同时间段的交通流量变化,帮助交通管理部门优化交通控制措施。

2. 折线图局限性

        然而,折线图也有其局限性。对于离散数据或数据点较少的情况,折线图可能不太适用。因为折线图是基于连续数据绘制的,如果数据点过于稀疏,折线可能无法准确反映数据的变化。此外,当数据波动较大时,折线图可能会显得比较杂乱,难以清晰地展示趋势。此时,可以考虑使用其他类型的图表,如柱状图或箱线图来辅助分析。

3. 折线图代码实现

3.1 Python 源代码

       Dash 模块是一个非常好用的模块!!!

import dash
from dash import html, dcc
import dash_bootstrap_components as dbc
import plotly.graph_objects as go
import numpy as npdef create_demo_charts():"""创建演示用的各种基本图表返回一个包含多个图表的列表"""# 创建示例数据x = np.linspace(0, 10, 100)y = np.sin(x)# 1. 折线图line_fig = go.Figure()line_fig.add_trace(go.Scatter(x=x, y=y, mode='lines', name='sin(x)'))line_fig.add_trace(go.Scatter(x=x, y=np.cos(x), mode='lines', name='cos(x)'))line_fig.update_layout(title='折线图示例',xaxis_title='X轴',yaxis_title='Y轴',template='plotly_white')return [line_fig]# 创建 Dash 应用,使用 Bootstrap 样式
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])app.layout = html.Div([# 图表展示区域html.Div([html.H3("数据可视化展示", className="text-center mt-4 mb-3"),dbc.Row([dbc.Col(dcc.Graph(figure=create_demo_charts()[0]), width=6)], className="mb-4"),], style={"backgroundColor": "#f0fff4", "padding": "20px", "borderRadius": "10px"}),], style={"padding": "20px"})if __name__ == "__main__":app.run_server(debug=True, port=8051)

3.2 折线图效果(网页显示)

相关文章:

数据可视化-1. 折线图

目录 1. 折线图适用场景分析 1. 1 时间序列数据展示 1.2 趋势分析 1.3 多变量比较 1.4 数据异常检测 1.5 简洁易读的数据可视化 1.6 特定领域的应用 2. 折线图局限性 3. 折线图代码实现 3.1 Python 源代码 3.2 折线图效果(网页显示) 1. 折线图…...

【现代服务端架构】传统服务器 对比 Serverless

在现代开发中,选择合适的架构是至关重要的。两种非常常见的架构模式分别是 传统服务器架构 和 Serverless。它们各有优缺点,适合不同的应用场景。今天,我就带大家一起对比这两种架构,看看它们的差异,并且帮助你选择最适…...

论文学习—VAE

VAE----Auto-Encoding Variational Bayes 2024年12月17日-2024年12月18日摘要引言方法例子:变分自动编码器 2024年12月17日-2024年12月18日 从今天开始,我准备记录自己学习的内容以此来检验我每天的学习量,菜鸡一枚,希望能够与大…...

AI 智能体(AI Agent)到底什么原理?能干什么事情

智能体应用有哪些? 智能体在千行百业中有着广泛的应用,目前已经在 600 多个项目落地和探索,广泛应用于政府与公共事业、交通、工业、能源、金融、医疗、科研等行业。智能体是模拟人类智能的计算机系统,能自主感知环境、智能决策并…...

【mysql】如何查看大表记录行数

目录 1. 使用 ANALYZE TABLE 和 SHOW TABLE STATUS2. 查询 INFORMATION_SCHEMA 表3. 使用索引统计信息4. 维护行数缓存5. 使用分区计数 1. 使用 ANALYZE TABLE 和 SHOW TABLE STATUS 1.ANALYZE TABLE 可以更新表的统计信息,然后使用 SHOW TABLE STATUS 来查看估算的…...

Linux之网络配置

一、检查虚拟机和本机通不通 测试虚拟机和本机是否通不通 winR,运行本机cmd,输入ipconfig,拿到本机ip地址 在虚拟机上ping一下这个地址(ctrlshitv)可以把复制的文本粘贴进虚拟机。 可以看到,不通,解决方法在最后&am…...

SpringBoot集成JWT和Redis实现鉴权登录功能

目前市面上有许多鉴权框架,鉴权原理大同小异,本文简单介绍下利用JWT和Redis实现鉴权功能,算是抛砖引玉吧。 主要原理就是“令牌主动失效机制”,主要包括以下4个步骤: (1)利用拦截器LoginInterceptor实现所有接口登录拦…...

LabVIEW热电偶传感器虚拟仿真实验系统

在教学和科研领域,实验设备的更新和维护成本较高,尤其是在经济欠发达地区,设备的短缺和陈旧化严重影响了教学质量。基于LabVIEW的热电偶传感器虚拟仿真实验系统能够通过模拟实验环境,提供一个成本低廉且效果良好的教学和研究平台。…...

Centos7 部署ZLMediakit

1、拉取代码 #国内用户推荐从同步镜像网站gitee下载 git clone --depth 1 https://gitee.com/xia-chu/ZLMediaKit cd ZLMediaKit #千万不要忘记执行这句命令 git submodule update --init 2、安装编译器 sudo yum -y install gcc 3、安装cmake sudo yum -y install cmake 4…...

Docker搭建kafka环境

系统:MacOS Sonoma 14.1 Docker版本:Docker version 27.3.1, build ce12230 Docker desktop版本:Docker Desktop 4.36.0 (175267) 1.拉取镜像 先打开Docker Desktop,然后在终端执行命令 docker pull lensesio/fast-data-dev …...

wsl2-ubuntu安装docker后无法拉取镜像

如上是报错全部信息, 这个实际上是因为网络不通导致的, 由于我实在公司使用, 而公司上网需要使用代理, 因此把代理加上就行了. # 为docker服务添加代理 mkdir /etc/systemd/system/docker.service.d cat > /etc/systemd/system/docker.service.d/http-proxy.conf <<…...

Invalid bound statement (not found) 错误解决

出现这个错误提示&#xff1a;Invalid bound statement (not found): com.xxx.small_reservior.dao.WaterRainMapper.getWaterRainByRegion&#xff0c;通常表示 MyBatis 框架无法找到与给定的 getWaterRainByRegion 方法匹配的 SQL 映射语句。这种问题通常发生在以下几种情况中…...

深度学习的下一站:解锁人工智能的新边界

引言&#xff1a;新边界的呼唤 深度学习的诞生&#xff0c;犹如人工智能领域的一次革命&#xff0c;激发了语音助手、自动驾驶、智能医疗等前沿技术的飞速发展。然而&#xff0c;面对现实世界的复杂性&#xff0c;现有的深度学习模型仍然存在数据依赖、可解释性差、环境适应力不…...

搭建Tomcat(三)---重写service方法

目录 引入 一、在Java中创建一个新的空项目&#xff08;初步搭建&#xff09; 问题&#xff1a; 要求在tomcat软件包下的MyTomcat类中编写main文件&#xff0c;实现在MyTomcat中扫描myweb软件包中的所有Java文件&#xff0c;并返回“WebServlet(url"myFirst")”中…...

跟着AI 学AI开发二,本地部署自己的Chat GPT

这里要安装的是Open Web UI &#xff0c;用一张架构图说明AI 前端与后端的关系。 之前的Python 的方法已经做过多次介绍&#xff0c;这里不做赘述。 顺序&#xff1a;1&#xff0c;Ollama。 2&#xff0c;Docker。 3&#xff0c;Open WebUI。 Ollama 安装下载地址&#xff1…...

XXE靶机漏洞复现通关

1.扫描XXE靶机的ip地址 将kali虚拟机和XXE靶机部署在同一局域网中&#xff0c;都采用NAT网络模式 搭建好后在kali终端中进行扫描XXE靶机的ip arp-scan -l 根据常识我们可以推断192.168.27.153为靶机的ip地址 2.访问靶机页面并扫描附录 进入页面后我们可以打开御剑扫描网页中…...

XS9922B 同轴RX芯片 四通道 多合一模拟高清解码器

XS9922B 是一款 4 通道模拟复合视频解码芯片&#xff0c;支持 HDCCTV 高清协议和 CVBS 标 清协议&#xff0c;视频制式支持 720P/1080P 高清制式和 960H/D1 标清制式。芯片将接收到的高清 模拟复合视频信号经过模数转化&#xff0c;视频解码以及 2D 图像处理之后&#xff0c;转…...

如何在谷歌浏览器中设置电子邮件通知

在现代互联网生活中&#xff0c;电子邮件已成为我们日常沟通的重要工具。为了更高效地管理邮件&#xff0c;您可以在谷歌浏览器中设置电子邮件通知。本文将详细介绍如何实现这一功能&#xff0c;并附带一些相关的Chrome使用技巧。&#xff08;本文由https://chrome.google64.cn…...

利用Java获取淘宝商品详情API接口的深入指南引言

引言 在电商领域&#xff0c;数据的价值日益凸显&#xff0c;尤其是在淘宝这样的大型电商平台上。淘宝商品详情API接口允许开发者通过编程方式获取商品的详细信息&#xff0c;这对于市场分析、竞争对手研究等方面至关重要。本文将详细介绍如何使用Java编写爬虫程序&#xff0c…...

3D工具显微镜的测量范围

一、测量尺寸范围 样品尺寸&#xff1a; 3D工具显微镜通常能够测量各种尺寸和形状的样品&#xff0c;从小至微米级别的微小结构到大至几厘米甚至更大的物体。具体的测量尺寸范围取决于显微镜的载物台大小、镜头焦距以及软件处理能力。测量精度&#xff1a; 3D工具显微镜的测量…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...