当前位置: 首页 > news >正文

初学stm32 --- 时钟配置

 

目录

 

stm32时钟系统

时钟源

(1) 2 个外部时钟源:

(2)2 个内部时钟源:

锁相环 PLL

        PLLXTPRE: HSE 分频器作为 PLL 输入 (HSE divider for PLL entry)

        PLLSRC: PLL 输入时钟源 (PLL entry clock source)

        PLLMUL: PLL 倍频系数 (PLL multiplication factor)

系统时钟 SYSCLK

        APB1 总线时钟

        APB2 总线时钟

时钟信号输出 MCO

RCC相关配置寄存器


stm32时钟系统

图1 STM32F1 时钟系统图

        图中A表示其他电路需要的输入源时钟信号;B为一个特殊的振荡电路“PLL”,由几个部分构成;C为重点要关注的MCU内的注释中“SYSCLK”; AHB预分配器将SYSCLK分频或不分频后分发给其他外设进行处理,包括到F部分的Cortex-M内核系统时钟。D和E部分分别为定时器等外设的时钟源APB/APB2。G是STM32的时钟输出功能。

时钟源

        对于STM32F1,输入时钟源主要包括HSI,HSE,LSI,LSE。其中,从时钟频率来可以分为高速时钟源和低速时钟源,其中HSI、HSE高速时钟,LSI、LSE是低速时钟。从来源可分为外部时钟源和内部时钟源,外部时钟源就是从外部通过接晶振的方式获取时钟源,其中 HSE 和 LSE 是外部时钟源;其他是内部时钟源,芯片上电即可产生,不需要借助外部电路。

(1) 2 个外部时钟源:

  •         高速外部震荡器HSE(High Speed External Clock signal)

        外接石英/陶瓷谐振器,频率为 4MHz~16MHz。本开发板使用的是 8MHz。

  •         低速外部振荡器 LSE (Low Speed External Clock signal)

        外接 32.768kHz 石英晶体,主要作用于 RTC 的时钟源。

(2)2 个内部时钟源:

  •         高速内部振荡器 HSI(High Speed Internal Clock signal)

        由内部 RC 振荡器产生,频率为 8MHz。

  •         低速内部振荡器 LSI(Low Speed Internal Clock signal)

        由内部 RC 振荡器产生,频率为 40kHz,可作为独立看门狗的时钟源

        芯片上电时默认由内部的 HSI 时钟启动,如果用户进行了硬件和软件的配置,芯片才会根据用户配置调试尝试切换到对应的外部时钟源,所以同时了解这几个时钟源信号还是很有必要的。

锁相环 PLL

        锁相环是自动控制系统中常用的一个反馈电路, 在 STM32 主控中,锁相环的作用主要有两个部分:输入时钟净化和倍频。 前者是利用锁相环电路的反馈机制实现,后者我们用于使芯片在更高且频率稳定的时钟下工作。

        在 STM32 中, 锁相环的输出也可以作为芯片系统的时钟源。 根据图 1 的时钟结构,使用锁相环时只需要进行三个部分的配置。为了方便查看,截取了使用 PLL 作为系统时钟源的配置部分,如图 2 所示。

图2 PLL 时钟配置图

        图 2 借用了在 CubeMX 下用锁相环配置 72MHz 时钟的一个示例:

  •         PLLXTPRE: HSE 分频器作为 PLL 输入 (HSE divider for PLL entry)

        即图2在标注为①的地方, 它专门用于 HSE, ST 设计它有两种方式,并把它的控制功能放在 RCC_CFGR 寄存器中, 我们引用如图3。
 

图3 设置选项值

         从 F103 参考手册可知它的值有两个:一是 2 分频, 另一种是 1 分频(不分频)。经过 HSE 分频器处理后的输出振荡时钟信号比直接输入的时钟信号更稳定。

  •         PLLSRC: PLL 输入时钟源 (PLL entry clock source)

        图2中②表示的是 PLL 时钟源的选择器, 同样的,参考 F103 参考手册:

图4 PLLSRC 锁相环时钟源选择

         它有两种可选择的输入源:设计为 HSI 的二分频时钟, 另一个是 A 处的 PLLXTPRE 处理后的 HSE 信号。

  •         PLLMUL: PLL 倍频系数 (PLL multiplication factor)

        图2中③所表示的配置锁相环倍频系数,同样地可以查到在 STM32F1 系列中, ST 设置它的有效倍频范围为 2~16 倍。

        结合图 2,要实现 72MHz 的主频率,我们通过选择 HSE 不分频作为 PLL 输入的时钟信号, 即输入 8Mhz,通过标号③选择倍频因子,可选择 2-16 倍频,我们选择 9 倍频,这样可以得到时钟信号为 8*9=72MHz。      

系统时钟 SYSCLK

         STM32 的系统时钟 SYSCLK 为整个芯片提供了时序信号。我们已经大致知道 STM32 主控是时序电路链接起来的。对于相同的稳定运行的电路,时钟频率越高,指令的执行速度越快,单位时间能处理的功能越多。 STM32 的系统时钟是可配置的,在 STM32F1 系列中,它可以为HSI、 PLLCLK、 HSE 中的一个,通过 CFGR 的位 SW[1:0]设置。

        讲解 PLL 作为系统时钟时,根据我们开发板的资源,可以把主频通过 PLL 设置为 72MHz。仍使用 PLL 作为系统时钟源,如果使用 HSI/2,那么可以得到最高主频 8MHz/2*16=64MHz。

        从上面的图 2 时钟树图可知, AHB、 APB1、 APB2、内核时钟等时钟通过系统时钟分频得到。根据得到的这个系统时钟,下面我们结合外设来看一看各个外设时钟源
 

图5 STM32F103 系统时钟生成图

         看图5 STM32F103 系统时钟, 标号 C 为系统时钟输入选择,可选时钟信号有外部高速时钟 HSE(8M)、内部高速时钟 HSI(8M)和经过倍频的 PLL CLK(72M),选择 PLL CLK 作为系统时钟,此时系统时钟的频率为 72MHz。系统时钟来到标号 D 的 AHB 预分频器,其中可选择的分频系数为 1, 2, 4, 8, 16, 32, 64, 128, 256,我们选择不分频,所以 AHB 总线时钟达到最大的 72MHz。

        下面介绍一下由 AHB 总线时钟得到的时钟:

        APB1 总线时钟

        由 HCLK 经过标号 E 的低速 APB1 预分频器得到,分频因子可以选择 1, 2, 4, 8, 16,这里我们选择的是 2 分频,所以 APB1 总线时钟为 36M。由于 APB1 是低速总线时钟,所以 APB1 总线最高频率为 36MHz,片上低速的外设就挂载在该总线上,例如有看门狗定时器、定时器 2/3/4/5/6/7、 RTC 时钟、 USART2/3/4/5、 SPI2(I2S2)与 SPI3(I2S3)、 I2C1 与 I2C2、CAN、 USB 设备和 2 个 DAC。

        APB2 总线时钟

        由 HCLK 经过标号 F 的高速 APB2 预分频器得到,分频因子可以选择 1, 2, 4, 8, 16,这里我们选择的是 1 即不分频,所以 APB2 总线时钟频率为 72M。与 APB2 高速总线链接的外设有外部中断与唤醒控制、 7 个通用目的输入/输出口(PA、 PB、 PC、 PD、 PE、 PF和 PG)、定时器 1、定时器 8、 SPI1、 USART1、 3 个 ADC 和内部温度传感器。其中标号 G 是ADC 的预分频器。

        此外, AHB 总线时钟直接作为 SDIO、 FSMC、 AHB 总线、 Cortex 内核、存储器和 DMA 的HCLK 时钟,并作为 Cortex 内核自由运行时钟 FCLK。

图6 USB、 RTC、 MCO 相关时钟

         标号 H 是 USBCLK,是一个通用串行接口时钟,时钟来源于 PLLCLK。 STM32F103 内置全速功能的 USB 外设,其串行接口引擎需要一个频率为 48MHz 的时钟源。该时钟源只能从PLL 输出端获取,可以选择为 1.5 分频或者 1 分频,也就是,当需要使用 USB 模块时, PLL 必须使能,并且时钟频率配置为 48MHz 或 72MHz。

        标号 I 是 MCO 输出内部时钟, STM32 的一个时钟输出 IO(PA8),它可以选择一个时钟信号输出,可以选择为 PLL 输出的 2 分频、 HSI、 HSE、或者系统时钟。这个时钟可以用来给外部其他系统提供时钟源。

         标号 J 是 RTC 定时器,其时钟源为 HSE/128、 LSE 或 LSI。

时钟信号输出 MCO

 STM32 允许通过设置, 通过 MCO 引脚输出一个稳定的时钟信号。在图1 中标注为“G”的部分。以下四个时钟信号可被选作 MCO 时钟:

        ● SYSCLK

        ● HSI

        ● HSE

        ● 除 2 的 PLL 时钟

        时钟的选择由时钟配置寄存器(RCC_CFGR)中的 MCO[2:0]位控制。

        我们可以通过 MCO 引脚来输出时钟信号, 测试输出时钟的频率,或作为其它需要时钟信号的外部电路的时钟。

RCC相关配置寄存器

相关文章:

初学stm32 --- 时钟配置

目录 stm32时钟系统 时钟源 (1) 2 个外部时钟源: (2)2 个内部时钟源: 锁相环 PLL PLLXTPRE: HSE 分频器作为 PLL 输入 (HSE divider for PLL entry) PLLSRC: PLL 输入时钟源 (PL…...

LeetCode:226.翻转二叉树

跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:226.翻转二叉树 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 …...

(css)鼠标移入或点击改变背景图片

(css)鼠标移入或点击改变背景图片 html <div class"mapTip"><divv-for"(item, index) of legendList":key"index"class"mapTipOne":class"{ active: change index }"click"legendHandle(item, index)"…...

Unbuntu下怎么生成SSL自签证书?

环境&#xff1a; WSL2 Unbuntu 22.04 问题描述&#xff1a; Unbuntu下怎么生成SSL自签证书&#xff1f; 解决方案&#xff1a; 生成自签名SSL证书可以使用OpenSSL工具&#xff0c;这是一个广泛使用的命令行工具&#xff0c;用于创建和管理SSL/TLS证书。以下是生成自签名…...

OpenGL ES 03 加载3张图片并做混合处理

OpenGL ES 02 加载3张图片并做混合处理 什么是纹理单元纹理单元的作用使用纹理单元的步骤详细解释加载图片并绑定到到GPU纹理单元采样器的设置1.设置采样器变量的纹理单元编号&#xff0c;目的是为了告诉纹理采样器&#xff0c;从哪个纹理单元采集数据2.如果你没有显式地设置采…...

深度学习-74-大语言模型LLM之基于API与llama.cpp启动的模型进行交互

文章目录 1 大模型量化方法1.1 GPTQ(后训练量化)1.2 GGUF(支持CPU)1.3 AWQ(后训练量化)2 llama.cpp2.1 功能2.1.1 Chat(聊天)2.1.2 Completion(补全)2.2 运行开源LLM2.2.1 下载安装llama.cpp2.2.2 下载gguf格式的模型2.2.3 运行大模型3 API访问3.1 调用补全3.2 调用聊天3.3 提取…...

PyTorch 2.0 中设置默认使用 GPU 的方法

PyTorch 2.0 中设置默认使用 GPU 的方法 在 PyTorch 2.0 中&#xff0c;默认情况下仍然是使用 CPU 进行计算&#xff0c;除非明确指定使用 GPU。torch.set_default_device 是 PyTorch 2.0 引入的新功能&#xff0c;用于设置默认设备&#xff0c;使得所有后续张量和模块在没有明…...

如何在 Ubuntu 22.04 服务器上安装 Jenkins

简介 Jenkins 是一个非常流行的免费自动化工具&#xff0c;每个人都应该了解它。DevOps 工程师使用它来自动化代码构建、测试和部署。本文将重点介绍如何在新的 Ubuntu LTS 版本&#xff0c;即 Ubuntu 22.04 中安装 Jenkins。 但在此之前&#xff0c;让我们快速讨论一下 Jenk…...

【一篇搞定配置】如何在Ubuntu上配置单机/伪分布式Hadoop

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;各种软件安装与配置_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 1.…...

利用Map集合设计程序,存储城市和对应等级相关信息

package testmap;import java.util.HashMap; import java.util.Scanner; import java.util.Set;public class TestHashMap6 {public static void main(String[] args) {//1.创建一个Map集合&#xff1a;存储键值对HashMap<String, String> map new HashMap<>();/…...

【自动驾驶】单目摄像头实现自动驾驶3D目标检测

&#x1f351;个人主页&#xff1a;Jupiter. &#x1f680; 所属专栏&#xff1a;传知代码 欢迎大家点赞收藏评论&#x1f60a; 目录 概述算法介绍演示效果图像推理视频推理 核心代码算法处理过程使用方式环境搭建下载权重文件pytorch 推理&#xff08;自动选择CPU或GPU&#x…...

21 go语言(golang) - gin框架安装及使用(二)

四、组成 前面的文章中&#xff0c;我们介绍了其中一部分组成&#xff0c;接下来继续学习&#xff1a; Router&#xff08;路由器&#xff09; Gin 使用基于树结构的路由机制来处理 HTTP 请求。它支持动态路由参数、分组路由以及中间件。路由器负责将请求路径映射到相应的处理…...

Intel(R) Iris(R) Xe Graphics安装Anaconda、Pytorch(CPU版本)

一、Intel(R) Iris(R) Xe Graphics安装Anaconda 下载网址&#xff1a;https://repo.anaconda.com/archive/ 双击Anaconda3-2024.10-1-Windows-x86_64&#xff0c;一直下一步&#xff0c;选择安装的路径位置&#xff0c;一直下一步就安装完成了。打开Anaconda PowerShell Promp…...

【Unity3D】实现可视化链式结构数据(节点数据)

关键词&#xff1a;UnityEditor、可视化节点编辑、Unity编辑器自定义窗口工具 使用Newtonsoft.Json、UnityEditor相关接口实现 主要代码&#xff1a; Handles.DrawBezier(起点&#xff0c;终点&#xff0c;起点切线向量&#xff0c;终点切线向量&#xff0c;颜色&#xff0c;n…...

Three.js推荐-可以和Three.js结合的动画库

在 Three.js 中&#xff0c;3D 模型、相机、光照等对象的变换&#xff08;如位置、旋转、缩放&#xff09;通常需要通过动画进行控制&#xff0c;以实现更加生动和富有表现力的效果。然而&#xff0c;Three.js 本身并没有内置的强大动画管理系统&#xff0c;尽管可以通过关键帧…...

增强现实(AR)和虚拟现实(VR)的应用

增强现实&#xff08;AR&#xff09;和虚拟现实&#xff08;VR&#xff09;是近年来迅速发展的技术&#xff0c;广泛应用于多个行业&#xff0c;提供沉浸式的体验和增强的信息交互。以下是AR和VR的定义及其在不同领域的具体应用。 相关学点&#xff1a; 2025年大数据、通信技术…...

告别机器人味:如何让ChatGPT写出有灵魂的内容

目录 ChatGPT的一些AI味道小问题 1.提供编辑指南 2.提供样本 3.思维链大纲 4.融入自己的想法 5.去除重复增加多样性 6.删除废话 ChatGPT的一些AI味道小问题 大多数宝子们再使用ChatGPT进行写作时&#xff0c;发现我们的老朋友ChatGPT在各类写作上还有点“机器人味”太重…...

【Threejs】从零开始(六)--GUI调试开发3D效果

请先完成前置步骤再进行下面操作&#xff1a;【Threejs】从零开始&#xff08;一&#xff09;--创建threejs应用-CSDN博客 一.GUI界面概述 GUI&#xff08;Graphical User Interface&#xff09;指的是图形化用户界面&#xff0c;广泛用在各种程序的上位机&#xff0c;能够通过…...

Cocos Creator 试玩广告开发

之前主要是使用Unity,这次刚好项目是试玩游戏的开发&#xff0c;所以临时学了Cocos来开发。所以这篇文章&#xff0c;更加关注从Unity转到Cocos开发的经历以及试玩的基本开发。 首先&#xff0c;我是没有使用过Cocos的&#xff0c;也没有接触过Ts语言&#xff0c;对于Ts的开发开…...

快速解决oracle 11g中exp无法导出空表的问题

在一些生产系统中&#xff0c;有些时候我们为了进行oracle数据库部分数据的备份和迁移&#xff0c;会使用exp进行数据的导出。但在实际导出的时候&#xff0c;我们发现导出的时候&#xff0c;发现很多空表未进行导出。今天我们给出一个快速解决该问题的办法。 一、问题复现 我…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...