当前位置: 首页 > news >正文

K-Means 聚类:数据挖掘的瑞士军刀

引言

在数据科学领域,聚类算法是一种非常重要的无监督学习方法,它能够帮助我们发现数据中的自然分组或模式。其中,K-Means 聚类算法因其简单高效而成为最常用的聚类算法之一。无论是市场细分、社交网络分析,还是图像分割等领域,K-Means 的身影无处不在。本文将带你深入了解 K-Means 聚类算法的原理与应用,从基础到实战,让你全面掌握这一强大的工具。

基础语法介绍

K-Means 聚类的核心概念

K-Means 是一种迭代的聚类算法,其目标是将数据集划分成 K 个簇(cluster),使得每个簇内部的数据点尽可能相似,而不同簇之间的数据点差异尽可能大。算法的主要步骤如下:

  1. 初始化:随机选择 K 个数据点作为初始的质心(centroid)。
  2. 分配:根据当前的质心,将每个数据点分配给最近的质心所在的簇。
  3. 更新:重新计算每个簇的质心,新的质心是该簇内所有数据点的平均值。
  4. 重复:重复执行第 2 步和第 3 步,直到质心不再发生变化或达到最大迭代次数。

基本语法规则

在 Python 中,我们可以使用 scikit-learn 库来实现 K-Means 聚类。以下是基本的语法结构:

from sklearn.cluster import KMeans# 创建 KMeans 模型
kmeans = KMeans(n_clusters=3)  # n_clusters 表示要划分的簇的数量# 拟合模型
kmeans.fit(X)  # X 是一个 (n_samples, n_features) 的数组# 预测簇标签
labels = kmeans.predict(X)# 获取质心
centroids = kmeans.cluster_centers_

基础实例

问题描述

假设我们有一个二维数据集,数据点分布如下图所示。我们的任务是使用 K-Means 算法将这些数据点分为 3 个簇。

代码示例

首先,我们需要导入必要的库并生成一些示例数据:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs# 生成示例数据
X, _ = make_blobs(n_samples=300, centers=3, cluster_std=0.60, random_state=0)# 绘制数据点
plt.scatter(X[:, 0], X[:, 1])
plt.show()

接下来,我们使用 K-Means 算法对数据进行聚类:

from sklearn.cluster import KMeans# 创建 KMeans 模型
kmeans = KMeans(n_clusters=3)# 拟合模型
kmeans.fit(X)# 获取簇标签
labels = kmeans.labels_# 获取质心
centroids = kmeans.cluster_centers_# 绘制聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.scatter(centroids[:, 0], centroids[:, 1], c='red', marker='x')
plt.title('K-Means Clustering')
plt.show()

运行上述代码后,你将看到数据点被成功地分成了 3 个簇,并且每个簇的质心也被标记出来。

进阶实例

问题描述

在实际应用中,数据集往往更加复杂,可能包含更多的特征和噪声。例如,我们有一个包含多个特征的客户数据集,希望通过 K-Means 聚类来识别不同的客户群体。

高级代码实例

首先,我们加载数据并进行预处理:

import pandas as pd
from sklearn.preprocessing import StandardScaler# 加载数据
data = pd.read_csv('customer_data.csv')# 选择特征
features = ['age', 'income', 'spending_score']
X = data[features]# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

接下来,我们使用 K-Means 算法进行聚类,并评估聚类效果:

from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score# 创建 KMeans 模型
kmeans = KMeans(n_clusters=4)# 拟合模型
kmeans.fit(X_scaled)# 获取簇标签
labels = kmeans.labels_# 计算轮廓系数
silhouette_avg = silhouette_score(X_scaled, labels)
print(f'Silhouette Score: {silhouette_avg}')# 可视化聚类结果
plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=labels, cmap='viridis')
plt.title('K-Means Clustering with Multiple Features')
plt.show()

通过计算轮廓系数(Silhouette Score),我们可以评估聚类的效果。轮廓系数的范围在 -1 到 1 之间,值越接近 1 表示聚类效果越好。

实战案例

问题描述

假设你在一家电商平台工作,负责用户行为分析。你的任务是通过用户的购买历史和浏览行为,将用户分成不同的群体,以便进行更精准的营销活动。

解决方案

  1. 数据收集:收集用户的购买历史、浏览记录、点击率等数据。
  2. 数据预处理:清洗数据,处理缺失值,标准化特征。
  3. 特征选择:选择对用户行为影响较大的特征,如购买频率、平均消费金额、浏览时间等。
  4. 模型训练:使用 K-Means 算法对数据进行聚类。
  5. 结果分析:分析不同用户群体的行为特征,制定相应的营销策略。

代码实现

import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score# 加载数据
data = pd.read_csv('user_behavior_data.csv')# 选择特征
features = ['purchase_frequency', 'average_spend', 'browse_time']
X = data[features]# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 创建 KMeans 模型
kmeans = KMeans(n_clusters=5)# 拟合模型
kmeans.fit(X_scaled)# 获取簇标签
labels = kmeans.labels_# 计算轮廓系数
silhouette_avg = silhouette_score(X_scaled, labels)
print(f'Silhouette Score: {silhouette_avg}')# 将聚类结果添加回原始数据
data['cluster'] = labels# 分析每个簇的特征
for cluster in range(5):cluster_data = data[data['cluster'] == cluster]print(f'Cluster {cluster} Summary:')print(cluster_data[features].describe())

通过上述代码,你可以将用户分成 5 个不同的群体,并分析每个群体的特征,从而制定更精准的营销策略。

扩展讨论

选择合适的 K 值

K-Means 算法的一个关键问题是选择合适的 K 值。常用的方法有肘部法(Elbow Method)和轮廓系数法(Silhouette Score)。肘部法通过绘制不同 K 值下的误差平方和(SSE)曲线,选择曲线的“肘部”作为最佳的 K 值。轮廓系数法则通过计算每个数据点的轮廓系数,选择使平均轮廓系数最大的 K 值。

处理大规模数据

对于大规模数据集,传统的 K-Means 算法可能会遇到性能瓶颈。此时可以考虑使用 Mini-Batch K-Means 或者分布式 K-Means 算法。Mini-Batch K-Means 在每次迭代时只使用一部分数据进行更新,从而加快收敛速度。分布式 K-Means 则可以利用多台机器并行计算,进一步提高效率。

其他聚类算法

虽然 K-Means 是最常用的聚类算法之一,但它也有局限性,例如对初始质心的选择敏感、不能处理非凸形状的簇等。因此,在实际应用中,还可以考虑其他聚类算法,如 DBSCAN、层次聚类(Hierarchical Clustering)、高斯混合模型(Gaussian Mixture Model)等。

总结

K-Means 聚类算法以其简单高效的特点,在数据挖掘和机器学习领域得到了广泛应用。通过本文的介绍,相信你已经掌握了 K-Means 的基本原理和应用方法。无论你是初学者还是有经验的开发者,都可以通过实践不断深化对 K-Means 的理解,将其应用于更多复杂的场景中。希望本文能为你提供有价值的参考和启发。

相关文章:

K-Means 聚类:数据挖掘的瑞士军刀

引言 在数据科学领域,聚类算法是一种非常重要的无监督学习方法,它能够帮助我们发现数据中的自然分组或模式。其中,K-Means 聚类算法因其简单高效而成为最常用的聚类算法之一。无论是市场细分、社交网络分析,还是图像分割等领域&a…...

项目练习:若依-前端项目的目录结构介绍

文章目录 一、目录截图二、目录讲解 一、目录截图 二、目录讲解 1、首先,我们可以看到,这个VUE项目,只有一个App.vue,所以,它是一个单页面系统。 这个App.vue是根组件,root组件。 2、public目录 在Vue 3.…...

知网研学 | 知网文献(CAJ+PDF)批量下载

知网文献(CAJPDF)批量下载 一、知网研学安装二、插件及脚本安装三、CAJ批量下载四、脚本下载及PDF批量下载浏览器取消拦截窗口 一、知网研学安装 批量下载知网文件,格式为es6文件,需使用知网研学软件打开,故需先安装该…...

设计模式期末复习

一、设计模式的概念以及分类 二、设计模式的主题和意图 三、面向对象程序设计原则,记住名字,还要理解它的使用场景以及如何用? 四、松耦合、紧耦合、强关联、弱关联、静态复用、动态复用的概念,还有静态委派,动态委…...

CentOS7源码编译安装nginx+php+mysql

1.安装nginx 安装依赖 yum -y install gcc gcc-c wget automake autoconf libtool libxml2-devel libxslt-devel perl-devel perl-ExtUtils-Embed pcre-devel openssl openssl-devel 创建一个不能登录的nginx运行用户 groupadd www-data useradd -s /sbin/nologin -g www-d…...

linux CentOS系统上卸载docker

一、停止Docker服务 首先,需要停止Docker服务。使用systemctl命令来停止Docker服务: bash复制代码sudo systemctl stop docker二、卸载Docker软件包 接下来,使用CentOS的包管理器yum来卸载Docker软件包。根据安装的Docker版本和组件&#…...

css中相对定位的应用场景

元素位置微调 文本与图标组合微调&#xff1a;在网页设计中&#xff0c;经常会有文本和图标的组合&#xff0c;比如一个带有搜索图标的搜索框。可以使用相对定位来微调图标在搜索框内的位置。例如&#xff0c;有以下HTML结构&#xff1a; <input type"text" class…...

Android 获取屏幕物理尺寸

注&#xff1a;编译 sdk 需要使用 30 因为引入了 WindowMetrics、uild.VERSION_CODES.R 新 sdk 才存在的类和属性 某些场景处理 view &#xff0c;对 view 显示的位置要求比较精确&#xff0c;通常我们使用context.getResources().getDisplayMetrics().widthPixels 获取到的宽、…...

C缺陷与陷阱 — 8 编译与链接

目录 1 程序的编译过程 2 动态链接的优缺点 2.1 动态链接的优点 2.2 动态链接的缺点 2.3 只使用动态链接 3 函数库链接的5个特殊秘密 4 警惕Interpositioning 5 产生链接器报告文件 1 程序的编译过程 程序的编译过程是将源代码转换成计算机可以执行的机器代码的过程。…...

知识分享第三十天-力扣343.(整数拆分)

343 整数拆分 给定一个正整数 n&#xff0c;将其拆分为至少两个正整数的和&#xff0c;并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 1: 输入: 2 输出: 1 解释: 2 1 1, 1 1 1。 示例 2: 输入: 10 输出: 36 解释: 10 3 3 4, 3 3 4 36。 说明: 你可…...

Springboot 整合DL4J 打造智能写作助手(文本生成)

项目准备 环境要求: Java 1.8或以上 Maven 或 Gradle&#xff08;用于项目管理&#xff09; Spring Boot框架 DL4J库&#xff08;DeepLearning4J&#xff09; 创建 Spring Boot 项目 使用 Spring Initializr 来生成一个新的 Spring Boot 项目。选择合适的依赖&#xff0c;例如…...

SPL06 基于stm32F103 HAL库驱动(软件模拟IIC)

talk is cheap, show you my code SPL06.c #include "SPL06.h"//*************全局变量*************// Factor_List* b_list; //存储过采样率对应的系数KP&#xff0c;KT COEF_ValueStruct Coefficient { 0 }; //存储校准系数…...

【C#】List求并集、交集、差集

值类型List List<int> intList1 new List<int>() { 1, 2, 3 };List<int> intList2 new List<int>() { 3, 4, 5 };var result intList1.Union(intList2);Console.WriteLine($"并 {string.Join(,,result)}");result intList1.Intersect(in…...

YOLOv8目标检测——详细记录使用ONNX Runtime进行推理部署C++/Python实现

概述 在之前博客中有介绍YOLOv8从环境安装到训练的完整过程&#xff0c;本节主要介绍ONNX Runtime的原理以及使用其进行推理加速&#xff0c;使用Python、C两种编程语言来实现。 https://blog.csdn.net/MariLN/article/details/143924548?spm1001.2014.3001.5501 1. ONNX Ru…...

mfc140u.dll是什么文件?如何解决mfc140u.dll丢失的相关问题

遇到“mfc140u.dll文件丢失”的错误通常影响应用程序的运行&#xff0c;这个问题主要出现在使用Microsoft Visual C环境开发的软件中。mfc140u.dll是一个重要的系统文件&#xff0c;如果它丢失或损坏&#xff0c;会导致相关程序无法启动。本文将简要介绍几种快速有效的方法来恢…...

Redis篇-19--运维篇1-主从复制(主从复制,读写分离,配置实现,实战案例)

1、概述 Redis的主从复制&#xff08;Master-Slave Replication&#xff09;是一种数据冗余机制&#xff0c;它允许将一台Redis服务器的数据复制到其他Redis服务器。在主从复制中&#xff0c;有一台主服务器&#xff08;Master&#xff09;和一个或多个从服务器&#xff08;Sl…...

【Elasticsearch入门到落地】4、Elasticsearch的安装

接上篇《3、es与mysql的概念对比》 上一篇我们学习了Elasticsearch与Mysql的概念与区别。本篇我们来进行Elasticsearch的环境准备及软件安装。 一、环境准备 如果我们没有自己的Linux服务器&#xff0c;且现在正在使用的是Windows操作系统的电脑&#xff0c;那么首先我们需要安…...

计算无人机俯拍图像的地面采样距离(GSD)矩阵

引言 在无人机遥感、测绘和精细农业等领域&#xff0c;地面采样距离&#xff08;Ground Sampling Distance&#xff0c;简称 GSD&#xff09;是一个非常重要的指标。GSD 是指图像中每个像素在地面上实际代表的物理距离&#xff0c;通常以米或厘米为单位。GSD 决定了图像的空间…...

牛客网 SQL37查找多列排序

SQL37查找多列排序 select device_id,gpa,age from user_profile order by gpa asc,age asc#select [字段1,字段2] from [表名] order by [字段1] [升序(asc)/降序(desc)],[字段2] [升序(asc)/降序(desc)] #select&#xff1a;查询 #order by 排序 每日问题 如何处理对象的状…...

el-tabs标签过多

tab-position&#xff1a;top情况 .el-tabs__nav-wrap{overflow-x: auto ;width: 86% ;margin-left: 10px ; } 效果&#xff1a; tab-position&#xff1a;left情况 .el-tabs__nav-wrap{overflow-x: auto ;height: 高度 ;margin-top: 10px ; } 效果&#xff1a; 注意&…...

如何制作搞笑配音视频?操作方法

在数字娱乐盛行的今天&#xff0c;搞笑配音视频凭借其独特的幽默感和创意&#xff0c;在网络上赢得了大量观众的喜爱。如果你也想尝试制作一部让人捧腹的搞笑配音视频&#xff0c;那么请跟随以下步骤&#xff0c;从撰写搞笑文案到视频配音剪辑&#xff0c;一步步打造你的作品。…...

[Unity]Unity跨平台开发之针对Android开发

用户手册的这一部分包含Android平台关于输入&#xff08;input&#xff09;、资产管理&#xff08;asset management&#xff09;和调试&#xff08;debugging&#xff09;等相关主题的开发信息。 Android移动脚本编写 注意&#xff1a;安卓可以在C#中使用UNITY_ANDROID来进行…...

ELK部署

背景 很多公司还是在单体项目中苦苦挣扎&#xff0c;没有必要上elk系统&#xff0c;大家都懂的一个原则系统的技术栈越多系统越复杂&#xff0c;维护起来也越麻烦&#xff0c;在没有大流量高并发的情况下我们就用单体服务挺舒服。我们行业的特殊性做的都是BTB的项目&#xff0…...

ELK系列-(四)轻量级的日志收集助手-Beat家族

一、前文回顾 ELK系列-&#xff08;一&#xff09;Docker部署ELK核心组件 ELK系列-&#xff08;二&#xff09;LogStash数据处理的瑞士军刀 ELK系列-&#xff08;三&#xff09;Kibana 数据可视化的艺术家 关于部署的整体架构欢迎大家回到前面的文章观看&#xff0c;此处&a…...

NodeJs-包管理工具

包英文单词是 package &#xff0c;代表了一组特定功能的源码集合 管理包的应用软件&#xff0c;可以对包进行 下载安装 &#xff0c; 更新 &#xff0c; 删除 &#xff0c; 上传 等操作 借助包管理工具&#xff0c;可以快速开发项目&#xff0c;提升开发效率 前端常用的包管理…...

AWR microwave office 仿真学习(二)使用多层结构天线/超表面的S参数确定层间距

引言 如果大家有看过一些多层天线或超表面的论文,有两种比较常用的分析方法,等效电路法和传输线分析法,这两种方法都是三维结构的电磁问题转换为二维/集总的电路问题。本文就介绍根据这种思想进行多层结构优化的一种方法:在AWR软件中根据单层结构的S参数,确定最佳层间距。…...

【zlm】 webrtc源码讲解三(总结)

目录 setsdp onwrite ​编辑 play 参考 setsdp onwrite play 参考 【zlm】 webrtc源码讲解_zlm webrtc-CSDN博客 【zlm】 webrtc源码讲解&#xff08;二&#xff09;_webrtc 源码-CSDN博客...

Springboot+Druid(可切换Hikari)+Mybatis-plus+mysql+hive的多数据源项目配置

1.搭建一个springboot项目&#xff0c;不会的搜一下&#xff0c;很简单这里不做赘述。 2.首先你搭建的springboot能正常启动之后&#xff0c;pom文件添加如下依赖&#xff1a; <dependency><groupId>com.alibaba</groupId><artifactId>druid</arti…...

Git使用步骤

Git 是一个分布式版本控制系统&#xff0c;广泛用于软件开发和其他需要跟踪文件变更的项目。以下是 Git 的基本使用方法和一些常用命令的详细说明。 安装 Git 在大多数操作系统上&#xff0c;你可以通过包管理器安装 Git&#xff1a; Windows: 下载并安装 Git for Windows。…...

Python+OpenCV系列:AI看图识人、识车、识万物

在人工智能风靡全球的今天&#xff0c;用 Python 和 OpenCV 结合机器学习实现物体识别&#xff0c;不仅是酷炫技能&#xff0c;更是掌握未来的敲门砖。本篇博文手把手教你如何通过摄像头或图片输入&#xff0c;识别人、动物、车辆及其他物品&#xff0c;让你的程序瞬间具备 AI …...