Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
- CIFAR数据集
- BIM介绍
- 基本原理
- 算法流程
- 特点
- 应用场景
- BIM代码实现
- BIM算法实现
- 攻击效果
- 代码汇总
- bim.py
- train.py
- advtest.py
之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类
本篇文章我们使用Pytorch实现BIM/I-FGSM对CIFAR10上的ResNet分类器进行攻击.
CIFAR数据集
CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:
- 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
- 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
- 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。
下面是一些示例样本:

BIM介绍
BIM(Basic Iterative Method)算法,也称为迭代快速梯度符号法(Iterative Fast Gradient Sign Method,I-FGSM),是一种基于梯度的对抗攻击算法,以下是对它的详细介绍:
基本原理
- 利用模型梯度:与FGSM(Fast Gradient Sign Method)算法类似,BMI算法也是利用目标模型对输入数据的梯度信息来生成对抗样本。通过在原始输入样本上添加一个微小的扰动,使得模型对扰动后的样本产生错误的分类结果。
- 迭代更新扰动:不同于FGSM只进行一次梯度计算和扰动添加,BMI算法通过多次迭代来逐步调整扰动,每次迭代都根据当前模型对扰动后样本的梯度来更新扰动,使得扰动更具针对性和有效性,从而增加攻击的成功率。
算法流程
- 初始化:首先获取原始的输入图像(x)和对应的真实标签 y y y,并设置一些攻击参数,如扰动量 ϵ \epsilon ϵ、步长 α \alpha α 和迭代次数 T T T 等。然后将原始图像复制一份作为初始的对抗样本 x a d v = x x^{adv}=x xadv=x。
- 迭代攻击:在每次迭代 t t t( t = 1 , 2 , ⋯ , T t = 1, 2, \cdots, T t=1,2,⋯,T)中,将当前的对抗样本 x a d v x^{adv} xadv 输入到目标模型 f f f 中,计算模型的输出 f ( x a d v ) f(x^{adv}) f(xadv) 和损失 J ( x a d v , y ) J(x^{adv}, y) J(xadv,y),其中损失函数通常使用交叉熵损失等。接着计算损失关于对抗样本的梯度 ∇ x a d v J ( x a d v , y ) \nabla_{x^{adv}}J(x^{adv}, y) ∇xadvJ(xadv,y),并根据梯度的符号来更新对抗样本: x a d v = x a d v + α ⋅ sign ( ∇ x a d v J ( x a d v , y ) ) x^{adv}=x^{adv}+\alpha\cdot \text{sign}(\nabla_{x^{adv}}J(x^{adv}, y)) xadv=xadv+α⋅sign(∇xadvJ(xadv,y))。
- 裁剪扰动:为了确保扰动后的样本与原始样本在视觉上不会有太大差异,需要对更新后的对抗样本进行裁剪,使其满足 x a d v = clip ( x a d v , x − ϵ , x + ϵ ) x^{adv}=\text{clip}(x^{adv}, x-\epsilon, x+\epsilon) xadv=clip(xadv,x−ϵ,x+ϵ),即保证扰动后的样本在原始样本的 ϵ \epsilon ϵ 邻域内。
- 终止条件判断:经过(T)次迭代后,得到最终的对抗样本(x^{adv}),此时将其输入到目标模型中,若模型对其的预测结果与真实标签不同,则攻击成功,否则攻击失败。
特点
- 攻击成功率较高:通过多次迭代更新扰动,BMI算法能够更精细地调整扰动方向和大小,使其更接近模型的决策边界,从而在一定程度上提高了攻击的成功率,相比FGSM等单步攻击算法,对一些防御机制较强的模型也能有较好的攻击效果。
- 计算成本相对较高:由于需要多次迭代计算梯度和更新扰动,BMI算法的计算成本相对较高,尤其是在处理大规模数据集或复杂模型时,所需的时间和计算资源会更多。
- 扰动相对较小:在迭代过程中不断调整扰动,并进行裁剪操作,使得最终生成的对抗样本的扰动相对较小,在视觉上更接近原始样本,具有一定的隐蔽性。
应用场景
- 模型安全性评估:通过使用BMI算法生成对抗样本,可以对深度学习模型的安全性进行评估,检测模型在面对对抗攻击时的脆弱性,帮助研究人员发现模型的潜在弱点,从而改进模型的防御机制,提高模型的鲁棒性。
- 对抗训练:在对抗训练中,将BMI算法生成的对抗样本作为额外的训练数据加入到原始训练数据集中,让模型学习如何抵御这类攻击,从而增强模型对对抗攻击的鲁棒性。
- 隐私保护研究:在一些隐私保护场景中,研究人员可以利用BMI算法生成对抗样本,通过分析模型对对抗样本的响应,来研究模型在处理用户数据时可能存在的隐私泄露风险,探索相应的隐私保护策略。
BIM代码实现
BIM算法实现
import torch
import torch.nn as nndef BIM(model, criterion, original_images, labels, epsilon, alpha=0.001, num_iterations=10):perturbed_images = original_images.clone().detach().requires_grad_(True)for _ in range(num_iterations):# 计算损失outputs = model(perturbed_images)loss = criterion(outputs, labels)# 计算梯度loss.backward()# 更新对抗样本perturbation = alpha * perturbed_images.grad.sign()perturbed_images = perturbed_images + perturbationperturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images
攻击效果

代码汇总
bim.py
import torch
import torch.nn as nndef BIM(model, criterion, original_images, labels, epsilon, alpha=0.001, num_iterations=10):perturbed_images = original_images.clone().detach().requires_grad_(True)for _ in range(num_iterations):# 计算损失outputs = model(perturbed_images)loss = criterion(outputs, labels)# 计算梯度loss.backward()# 更新对抗样本perturbation = alpha * perturbed_images.grad.sign()perturbed_images = perturbed_images + perturbationperturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images
train.py
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18# 数据预处理
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)if __name__ == "__main__":# 训练模型for epoch in range(10): # 可以根据实际情况调整训练轮数running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')running_loss = 0.0torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')print('Finished Training')
advtest.py
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as pltssl._create_default_https_context = ssl._create_unverified_context# 定义数据预处理操作
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,shuffle=False, num_workers=2)# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = ResNet18(num_classes=10).to(device)criterion = nn.CrossEntropyLoss()# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))if __name__ == "__main__":# 在测试集上进行FGSM攻击并评估准确率model.eval() # 设置为评估模式correct = 0total = 0epsilon = 0.01 # 可以调整扰动强度for data in testloader:original_images, labels = data[0].to(device), data[1].to(device)original_images.requires_grad = Trueattack_name = 'BIM'if attack_name == 'FGSM':perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'BIM':perturbed_images = BIM(model, criterion, original_images, labels, epsilon)perturbed_outputs = model(perturbed_images)_, predicted = torch.max(perturbed_outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = 100 * correct / total# Attack Success RateASR = 100 - accuracyprint(f'Load ResNet Model Weight from {weights_path}')print(f'epsilon: {epsilon}')print(f'ASR of {attack_name} : {ASR}%')
相关文章:
Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击 CIFAR数据集BIM介绍基本原理算法流程特点应用场景 BIM代码实现BIM算法实现攻击效果 代码汇总bim.pytrain.pyadvtest.py 之前已经针对CIFAR10训练了多种分类器: Pytorch | 从零构建AlexNet对CIFAR1…...
音频进阶学习八——傅里叶变换的介绍
文章目录 前言一、傅里叶变换1.傅里叶变换的发展2.常见的傅里叶变换3.频域 二、欧拉公式1.实数、虚数、复数2.对虚数和复数的理解3.复平面4.复数和三角函数5.复数的运算6.欧拉公式 三、积分运算1.定积分2.不定积分3.基本的积分公式4.积分规则线性替换法分部积分法 5.定积分计算…...
将4G太阳能无线监控的视频接入电子监控大屏,要考虑哪些方面?
随着科技的飞速发展,4G太阳能无线监控系统以其独特的优势在远程监控领域脱颖而出。这种系统结合了太阳能供电的环保特性和4G无线传输的便捷性,为各种环境尤其是无电或电网不稳定的地区提供了一种高效、可靠的视频监控解决方案。将这些视频流接入大屏显示…...
使用docker拉取镜像很慢或者总是超时的问题
在拉取镜像的时候比如说mysql镜像,在拉取 时总是失败: 像这种就是网络的原因,因为你是连接到了外网去进行下载的,这个时候可以添加你的访问镜像源。也就是daemon.json文件,如果你没有这个文件可以输入 vim /etc/dock…...
Redis数据库笔记
Spring cache 缓存的介绍 在springboot中如何使用redis的缓存 1、使用Cacheable的例子【一般都是在查询的方法上】 /*** 移动端的套餐查询* value 就是缓存的名称* key 就是缓存id ,就是一个缓存名称下有多个缓存,根据id来区分* 这个id一般就是多个查询…...
U盘出现USBC乱码文件的全面解析与恢复指南
一、乱码现象初探:USBC乱码文件的神秘面纱 在数字时代,U盘已成为我们日常生活中不可或缺的数据存储工具。然而,当U盘中的文件突然变成乱码,且文件名前缀显示为“USBC”时,这无疑给用户带来了极大的困扰。这些乱码文件…...
多线程 - 自旋锁
个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 多线程 - 自旋锁 收录于专栏[Linux学习] 本专栏旨在分享学习Linux的一点学习笔记,欢迎大家在评论区交流讨论💌 目录 概述 原理 优点与…...
vue2 - Day02 -计算属性(computed)、侦听器(watch)和方法(methods)
在 Vue.js 中,计算属性(computed)、侦听器(watch)和方法(methods)都是响应式的数据处理方式 文章目录 1. 方法(Methods)1.1. 是什么1.2. 怎么用示例: 1.3. 特…...
Linux C 程序 【05】异步写文件
1.开发背景 Linux 系统提供了各种外设的控制方式,其中包括文件的读写,存储文件的介质可以是 SSD 固态硬盘或者是 EMMC 等。 其中常用的写文件方式是同步写操作,但是如果是写大文件会对 CPU 造成比较大的负荷,采用异步写的方式比较…...
Liveweb视频汇聚平台支持WebRTC协议赋能H.265视频流畅传输
随着科技的飞速发展和网络技术的不断革新,视频监控已经广泛应用于社会各个领域,成为现代安全管理的重要组成部分。在视频监控领域,视频编码技术的选择尤为重要,它不仅关系到视频的质量,还直接影响到视频的传输效率和兼…...
SQL组合查询
本文讲述如何利用 UNION 操作符将多条 SELECT 语句组合成一个结果集。 1. 组合查询 多数 SQL 查询只包含从一个或多个表中返回数据的单条 SELECT 语句。但是,SQL 也允许执行多个查询(多条 SELECT 语句),并将结果作为一个查询结果…...
方正畅享全媒体新闻采编系统 screen.do SQL注入漏洞复现
0x01 产品简介 方正畅享全媒体新闻生产系统是以内容资产为核心的智能化融合媒体业务平台,融合了报、网、端、微、自媒体分发平台等全渠道内容。该平台由协调指挥调度、数据资源聚合、融合生产、全渠道发布、智能传播分析、融合考核等多个平台组成,贯穿新闻生产策、采、编、发…...
【机器学习】【集成学习——决策树、随机森林】从零起步:掌握决策树、随机森林与GBDT的机器学习之旅
这里写目录标题 一、引言机器学习中集成学习的重要性 二、决策树 (Decision Tree)2.1 基本概念2.2 组成元素2.3 工作原理分裂准则 2.4 决策树的构建过程2.5 决策树的优缺点(1)决策树的优点(2)决策树的缺点(3࿰…...
Flink执行模式(批和流)如何选择
DataStream API支持不同的运行时执行模式(batch/streaming),你可以根据自己的需求选择对应模式。 DataStream API的默认执行模式就是streaming,用于需要连续增量处理并且预计会一直保持在线的无界(数据源输入是无限的)作业。 而batch执行模式则用于有界(输入有限)作业…...
LeetCode:101. 对称二叉树
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:101. 对称二叉树 给你一个二叉树的根节点 root , 检查它是否轴对称。 示例 1: 输…...
LDO输入电压不满足最小压差时输出会怎样?
1、LDO最小压差 定义:低压差稳压器(Low-dropout regulator,LDO)LDO的最小压差Vdo指的是LDO正常工作时,LDO的输入电压必须高于LDO输出电压的差值,即Vin≥VdoVout Vdo的值不是定值,会随着负载…...
源码分析之Openlayers中ZoomSlider滑块缩放控件
概述 ZoomSlider滑块缩放控件就是Zoom缩放控件的异形体,通过滑块的拖动或者点击滑槽,实现地图的缩放;另外其他方式控制地图缩放时,也会引起滑块在滑槽中的位置改变;即ZoomSlider滑块缩放控件会监听地图的缩放级别&…...
在Win11系统上安装Android Studio
诸神缄默不语-个人CSDN博文目录 下载地址:https://developer.android.google.cn/studio?hlzh-cn 官方安装教程:https://developer.android.google.cn/studio/install?hlzh-cn 点击Next,默认会同时安装Android Studio和Android虚拟机&#…...
华为ensp--BGP路径选择-AS_Path
学习新思想,争做新青年,今天学习的是BGP路径选择-AS_Path 实验目的: 理解AS_Path属性的概念 理解通过AS_Path属性进行选路的机制 掌握修改AS_Path属性的方法 实验内容: 本实验模拟了一个运营商网络场景,所有路由器都运行BGP协议ÿ…...
Android Java Ubuntu系统如何编译出 libopencv_java4.so
Cmake: cd ~ wget https://github.com/Kitware/CMake/releases/download/v3.30.3/cmake-3.30.3-linux-x86_64.tar.gztar -xzvf cmake-3.30.3-linux-x86_64.tar.gz sudo ln -sf $(pwd)/cmake-3.30.3-linux-x86_64/bin/* /usr/bin/cmake --versionAndroid NDK: wget https://…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
