LSTM实现天气模型训练与预测
要实现一个天气预测的模型,并确保该模型可以反复进行训练和更新,先设计:
设计方案
-
数据获取:
- 使用公开的天气数据API(例如OpenWeather API或其他类似的API)获取天气数据。
- 确保数据以合适的格式(如CSV或JSON)进行存储和处理,数据应该包含时间戳、温度、湿度、降水量等字段。
-
数据预处理:
- 对天气数据进行清洗,包括处理缺失值、异常值、日期时间格式处理等。
- 将数据转化为适合机器学习模型训练的格式,进行特征工程(如标准化、归一化等)。
-
模型选择:
- 使用时间序列预测模型(如ARIMA、Prophet)或机器学习模型(如Random Forest、XGBoost等)来进行天气预测。
- 如果需要处理多种特征(如温度、湿度等),可以选择集成方法或深度学习模型(如LSTM、GRU等)。
-
训练与评估:
- 将数据分为训练集和测试集,进行模型训练,并使用交叉验证等方法来评估模型性能。
- 训练后保存模型(可以使用joblib、pickle等工具)以便反复使用。
-
模型更新:
- 定期获取新的数据并用其进行模型更新。
- 需要设置定时任务,自动下载新数据并更新模型。
详细实现
以下是设计后的方案和代码:
项目文件夹结构
weather-prediction/
├── data/
│ ├── raw/ # 原始天气数据文件
│ ├── processed/ # 预处理后的数据文件
│ └── model/ # 存储训练好的模型
├── scripts/
│ ├── download_weather_data.py # 下载天气数据并保存为CSV
│ ├── preprocess_data.py # 数据预处理脚本
│ ├── train_model.py # 训练LSTM模型脚本
│ ├── continue_training.py # 持续训练脚本
│ └── predict_weather.py # 预测天气脚本
├── models/
│ ├── weather_lstm_model.h5 # 保存的LSTM模型
└── requirements.txt # 项目依赖包
详细步骤
- 下载天气数据脚本(
download_weather_data.py
):从API获取并保存到CSV文件。 - 数据预处理脚本(
preprocess_data.py
):加载CSV,处理数据并保存为标准格式。 - 训练模型脚本(
train_model.py
):使用LSTM模型进行训练并保存模型。 - 持续训练脚本(
continue_training.py
):加载已保存的模型,使用新数据进行模型更新。 - 预测天气脚本(
predict_weather.py
):使用训练好的模型进行天气预测。
1. 下载天气数据并保存到CSV文件(download_weather_data.py
)
import requests
import pandas as pd
import os
from datetime import datetime# 下载天气数据
def fetch_weather_data(api_key, city="Beijing"):url = f"http://api.openweathermap.org/data/2.5/forecast?q={city}&appid={api_key}&units=metric"response = requests.get(url)data = response.json()weather_data = []for item in data['list']:weather_data.append({"datetime": item['dt_txt'],"temperature": item['main']['temp'],"humidity": item['main']['humidity'],"pressure": item['main']['pressure'],"wind_speed": item['wind']['speed'],"rain": item.get('rain', {}).get('3h', 0)})df = pd.DataFrame(weather_data)return dfdef save_weather_data_to_csv(df, filename="../data/raw/weather_data.csv"):if not os.path.exists(os.path.dirname(filename)):os.makedirs(os.path.dirname(filename))df.to_csv(filename, index=False)print(f"Weather data saved to {filename}")def main():api_key = "your_openweather_api_key"city = "Beijing"df = fetch_weather_data(api_key, city)save_weather_data_to_csv(df)if __name__ == "__main__":main()
2. 数据预处理脚本(preprocess_data.py
)
import pandas as pd
from sklearn.preprocessing import StandardScaler
import osdef load_data(filename="../data/raw/weather_data.csv"):df = pd.read_csv(filename)df['datetime'] = pd.to_datetime(df['datetime'])return dfdef preprocess_data(df):# 时间特征处理df['hour'] = df['datetime'].dt.hourdf['day'] = df['datetime'].dt.dayofweekdf['month'] = df['datetime'].dt.monthdf['year'] = df['datetime'].dt.year# 特征选择features = ['temperature', 'humidity', 'pressure', 'wind_speed', 'rain', 'hour', 'day', 'month', 'year']df = df[features]# 标准化特征scaler = StandardScaler()df[features] = scaler.fit_transform(df[features])return df, scalerdef save_processed_data(df, filename="../data/processed/processed_weather_data.csv"):df.to_csv(filename, index=False)print(f"Processed data saved to {filename}")def main():df = load_data()processed_data, scaler = preprocess_data(df)save_processed_data(processed_data)return scalerif __name__ == "__main__":main()
3. 训练LSTM模型脚本(train_model.py
)
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from sklearn.model_selection import train_test_split
import osdef load_processed_data(filename="../data/processed/processed_weather_data.csv"):return pd.read_csv(filename)def prepare_lstm_data(df, time_steps=10):X, y = [], []for i in range(time_steps, len(df)):X.append(df.iloc[i-time_steps:i, :-1].values) # 选择过去的时间步作为特征y.append(df.iloc[i, 0]) # 预测当前温度X, y = np.array(X), np.array(y)return X, ydef create_lstm_model(input_shape):model = Sequential([LSTM(50, return_sequences=True, input_shape=input_shape),Dropout(0.2),LSTM(50, return_sequences=False),Dropout(0.2),Dense(1)])model.compile(optimizer='adam', loss='mean_squared_error')return modeldef train_model(X, y):X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)model = create_lstm_model((X_train.shape[1], X_train.shape[2]))model.fit(X_train, y_train, epochs=20, batch_size=32, validation_data=(X_test, y_test))return modeldef save_model(model, filename="../models/weather_lstm_model.h5"):if not os.path.exists(os.path.dirname(filename)):os.makedirs(os.path.dirname(filename))model.save(filename)print(f"Model saved to {filename}")def main():df = load_processed_data()X, y = prepare_lstm_data(df)model = train_model(X, y)save_model(model)if __name__ == "__main__":main()
4. 持续训练脚本(continue_training.py
)
import tensorflow as tf
import pandas as pd
from train_model import load_processed_data, prepare_lstm_data, create_lstm_model, save_model
import osdef load_model(filename="../models/weather_lstm_model.h5"):return tf.keras.models.load_model(filename)def continue_training(model, df, time_steps=10):X, y = prepare_lstm_data(df, time_steps)model.fit(X, y, epochs=10, batch_size=32)return modeldef main():df = load_processed_data()model = load_model()updated_model = continue_training(model, df)save_model(updated_model)if __name__ == "__main__":main()
5. 预测天气脚本(predict_weather.py
)
import tensorflow as tf
import pandas as pd
from train_model import prepare_lstm_datadef load_model(filename="../models/weather_lstm_model.h5"):return tf.keras.models.load_model(filename)def predict_weather(model, df, time_steps=10):X, _ = prepare_lstm_data(df, time_steps)predictions = model.predict(X)return predictionsdef main():df = pd.read_csv("../data/processed/processed_weather_data.csv")model = load_model()predictions = predict_weather(model, df)print(predictions)if __name__ == "__main__":main()
6. 依赖文件(requirements.txt
)
pandas
numpy
scikit-learn
tensorflow
requests
代码说明
-
下载天气数据并保存:
download_weather_data.py
脚本从OpenWeather API获取数据并保存为CSV文件。
-
数据预处理:
preprocess_data.py
脚本进行数据清洗、标准化以及特征处理,保存为预处理过的CSV文件。
-
训练LSTM模型:
train_model.py
通过使用过去的时间序列数据来训练LSTM模型,并保存模型。
-
持续训练:
continue_training.py
脚本加载已保存的模型,并继续使用新数据进行训练。
-
预测天气:
predict_weather.py
加载训练好的模型并对新数据进行天气预测。
没有谁生来就是优秀的人,你可以不优秀,但是不可以失去动力,不求上进,只会荒废一生。
相关文章:
LSTM实现天气模型训练与预测
要实现一个天气预测的模型,并确保该模型可以反复进行训练和更新,先设计: 设计方案 数据获取: 使用公开的天气数据API(例如OpenWeather API或其他类似的API)获取天气数据。确保数据以合适的格式(…...

TCL发布万象分区,再造Mini LED技术天花板
作者 |辰纹 来源 | 洞见新研社 现实世界中,光通过悬浮在大气中的冰晶折射,呈现出环形、弧形、柱形或亮点的扩散,从而产生光晕,雨后的彩虹是我们经常能看到的光晕现象。 然而,当光晕出现在电视中,那就不是…...

2024广东省职业技能大赛云计算——私有云(OpenStack)平台搭建
OpenStack搭建 前言 搭建采用双节点安装,即controller控制节点和compute计算节点。 CentOS7 系统选择 2009 版本:CentOS-7-x86_64-DVD-2009.iso 可从阿里镜像站下载:https://mirrors.aliyun.com/centos/7/isos/x86_64/ OpenStack使用竞赛培…...

简单了解图注意力机制
简单了解图注意力机制 如果对传统的图匹配的聚合方式进行创新的话,也就是对h这一个节点的聚合方式进行创新。 h i ( l 1 ) Norm ( σ ( h i ( l ) α ∥ h i ( l ) ∥ m i ( l ) ∥ m i ( l ) ∥ ) ) , \mathbf{h}_{i}^{(l1)}\operatorname{Norm}\left(\sigm…...

UI Automator Viewer操作
版本:24.4.1 使用UI Automator Viewer报错如下: Error obtaining Ul hierarchy Reason: Error while obtaining Ul hierarchy XML file: com.android.ddmlib.SyncException: Remote object doesnt exist!可以使用指令: 保存uix文件 adb sh…...

SpringBoot的创建方式
SpringBoot创建的五种方式 1.通过Springboot官网链接下载 注意SpringBoot项目的封装方式默认为Jar 需要查看一下,自己的Maven版本是否正确 创建成功 2.通过 aliyun官网链接下载 修改服务路径为阿里云链接 创建成功 3.通过Springboot官网下载 点击,拉到最…...
Vue3之性能优化
Vue3作为Vue框架的最新版本,在性能上进行了大量的优化,使得其在处理大型应用和复杂界面时表现更加出色。本文将详细介绍Vue3的性能提升、优化策略以及性能提升的实例,并结合具体代码和性能测试数据,展示Vue3在实际应用中的性能优势…...
RFdiffusion Sampler类 sample_step 方法解读
Sampler类的sample_step 方法的主要目的是根据扩散模型的预测生成在时间步 t-1 上的下一个三维结构、序列和其他相关特征。这是扩散采样过程的核心步骤之一。 源代码: def sample_step(self, *, t, x_t, seq_init, final_step):Generate the next pose that the model should…...

Flutter组件————FloatingActionButton
FloatingActionButton 是Flutter中的一个组件,通常用于显示一个圆形的按钮,它悬浮在内容之上,旨在吸引用户的注意力,并代表屏幕上的主要动作。这种按钮是Material Design的一部分,通常放置在页面的右下角,但…...

算法学习(十六)—— 综合练习
目录 1863. 找出所有子集的异或总和再求和 47. 全排列 Ⅱ 17. 电话号码的字母组合 22. 括号生成 77. 组合 494. 目标和 39. 组合总和 784. 字母大小写全排列 526. 优美的排列 51. N皇后 36. 有效的数独 37. 解数独 79. 单词搜索 1219. 黄金矿工 980. 不同路径 Ⅲ…...

kratos源码分析:熔断器
文章目录 为什么需要熔断Google sre弹性熔断算法kratos Breaker源码分析公共接口sre实现上报请求结果判定是否熔断 为什么需要熔断 一般来说,当服务器过载(overload)时,需要给client返回服务过载的报错 但是拒接请求也有成本&…...

CTF_1
CTF_Show 萌新赛 1.签到题 <?php if(isset($_GET[url])){system("curl https://".$_GET[url].".ctf.show"); }else{show_source(__FILE__); }?> 和 AI 一起分析 1.if(isset($_GET[url]))检查GET请求中是否存在名为url的参数。 curl 2.curl…...

【系统】Mac crontab 无法退出编辑模式问题
【系统】Mac crontab 无法退出编辑模式问题 背景一、问题回答1.定位原因:2.确认编辑器类型3.确保编辑器进入正确3.1 确认是否有crontab调度任务3.2 进入编辑器并确保编辑器正常3.3 保存操作 4.确认crontab任务存在5.确保脚本的可执行性和正确性 二、后续 背景 之前…...
K8s中 statefulset 和deployment的区别
在 Kubernetes 中,StatefulSet 和 Deployment 是两种管理 Pod 的控制器,它们的主要区别在于 状态管理 和 Pod 的标识。以下是详细对比: 1. 功能定位 Deployment 用途:用于 无状态应用 的部署,例如 Web 服务、API 服务…...

springboot中的AOP以及面向切面编程思想
快速入门体验AOP aop中相关概念 实现导入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-aop</artifactId> </dependency> 新建aop文件夹,里面声明XXXAspect类 @Aspect // 声…...

降低Mobx技术债问题-React前端数据流方案调研整理
我们现在主要是使用Mobx,但是Mobx的易于上手和灵活度也带来了很多预期以外的问题,随着项目的增长我们的代码技术债变得愈加沉重,不同的模块杂糅一起、单一store无限膨胀。 为此我们的调研是希望能找到一个更好的state配置、数据流的约定方案。…...

RabbitMQ消息可靠性保证机制7--可靠性分析-rabbitmq_tracing插件
rabbitmq_tracing插件 rabbitmq_tracing插件相当于Firehose的GUI版本,它同样能跟踪RabbitMQ中消息的注入流出情况。rabbitmq_tracing插件同样会对流入流出的消息进行封装,然后将封装后的消息日志存入相应的trace文件中。 # 开启插件 rabbitmq-plugins …...
SQL进阶技巧:如何求解直接线上最多的点数?
目录 0 问题描述 1 数据准备 2 问题分析 3 求解优化 步骤一:构建 “斜率键” 并统计点的数量(核心步骤) 步骤二:找出最多的点数(最终结果) 0 问题描述 “平面上最多的点数” 问题通常是指在一个二维平面中给定了若干个点的坐标(例如以 (x,y) 的形式表示),要求找…...

【老白学 Java】泛型应用 - 卡拉 OK(四)
泛型应用 - 卡拉 OK(四) 文章来源:《Head First Java》修炼感悟。 上文说到,解决了按歌名排序的问题后,老白立刻想到了按歌手名字排序的问题。 老白决定趁热打铁,尝试着实现自定义排序方式。 Collections…...

android studio更改应用图片,和应用名字。
更改应用图标,和名字 先打开AndroidManifest.xml文件。 更改图片文件名字( 右键-->构建-->重命名(R))...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...

vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...