传统CV算法——基于opencv的答题卡识别判卷系统
基于OpenCV的答题卡识别系统,其主要功能是自动读取并评分答题卡上的选择题答案。系统通过图像处理和计算机视觉技术,自动化地完成了从读取图像到输出成绩的整个流程。下面是该系统的主要步骤和实现细节的概述:
1. 导入必要的库
系统首先导入了numpy、argparse、imutils和cv2等Python库。这些库提供了处理图像、解析命令行参数等功能。
# 导入工具包
import numpy as np
import argparse
import imutils
import cv2
2. 参数设置
使用argparse库来处理命令行输入参数,允许用户指定输入图像的路径。
# 设置参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="images/test_01.png",help="path to the input image")
args = vars(ap.parse_args())
3. 定义答案键
系统中定义了一个答案键(ANSWER_KEY),这是一个字典,用于存储每个问题的正确答案选项
# 正确答案
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}
以下是针对每个主要步骤的对应代码片段,以及如何实现在上述答题卡识别系统中的功能:
4. 图像预处理
image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 75, 200)
实现细节:
cv2.imread:加载图像。cv2.cvtColor:将图像从BGR颜色空间转换为灰度。cv2.GaussianBlur:应用高斯模糊,减少噪声。cv2.Canny:执行Canny边缘检测。

5. 轮廓检测
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
docCnt = Noneif len(cnts) > 0:cnts = sorted(cnts, key=cv2.contourArea, reverse=True)for c in cnts:peri = cv2.arcLength(c, True)approx = cv2.approxPolyDP(c, 0.02 * peri, True)if len(approx) == 4:docCnt = approxbreak
实现细节:
cv2.findContours:查找边缘。sorted:按轮廓面积大小排序。cv2.approxPolyDP:轮廓近似,寻找角点。

6. 透视变换
paper = four_point_transform(image, docCnt.reshape(4, 2))
warped = four_point_transform(gray, docCnt.reshape(4, 2))
实现细节:
- 使用自定义函数
four_point_transform来执行透视变换,以得到答题卡的顶视图。

7. 应用阈值
thresh = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
实现细节:
cv2.threshold:通过Otsu方法自动确定最优阈值并二值化图像。

8. 轮廓再次检测
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
实现细节:
- 再次检测二值化图像中的轮廓。

9. 筛选与排序
questionCnts = []for c in cnts:(x, y, w, h) = cv2.boundingRect(c)ar = w / float(h)if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:questionCnts.append(c)questionCnts = contours.sort_contours(questionCnts, method="top-to-bottom")[0]
实现细节:
- 筛选形状近似于圆的轮廓,并按从上到下排序。

10. 评分逻辑
correct = 0
for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):cnts = contours.sort_contours(questionCnts[i:i+5])[0]bubbled = Nonefor (j, c) in enumerate(cnts):mask = np.zeros(thresh.shape, dtype="uint8")cv2.drawContours(mask, [c], -1, 255, -1)mask = cv2.bitwise_and(thresh, thresh, mask=mask)total = cv2.countNonZero(mask)if bubbled is None or total > bubbled[0]:bubbled = (total, j)if bubbled[1] == ANSWER_KEY[q]:correct += 1
实现细节:
- 遍历每个问题的答题区域,通过填涂密度判断学生选择,通过计算填涂区域的像素密度来判断学生的的选项。然后将这个选择与答案键中的正确选项进行比较,统计出正确的答案数量。

11. 结果展示
score = (correct / float(len(ANSWER_KEY))) * 100
print("总分: {:.2f}%".format(score))
cv2.imshow("Original", image)
cv2.imshow("Exam", paper)
cv2.waitKey(0)
实现细节:
- 计算出得分百分比,并输出。
cv2.imshow:展示原始图像和处理后的图像,以便检查标记的正确与错误的答案。
源码下载
源码下载:答题卡识别判卷系统
相关文章:
传统CV算法——基于opencv的答题卡识别判卷系统
基于OpenCV的答题卡识别系统,其主要功能是自动读取并评分答题卡上的选择题答案。系统通过图像处理和计算机视觉技术,自动化地完成了从读取图像到输出成绩的整个流程。下面是该系统的主要步骤和实现细节的概述: 1. 导入必要的库 系统首先导入…...
国产 HighGo 数据库企业版安装与配置指南
国产 HighGo 数据库企业版安装与配置指南 1. 下载安装包 访问 HighGo 官方网站(https://www.highgo.com/),选择并下载企业版安装包。 2. 上传安装包到服务器 将下载的安装包上传至服务器,并执行以下命令: [rootmas…...
「Mac畅玩鸿蒙与硬件46」UI互动应用篇23 - 自定义天气预报组件
本篇将带你实现一个自定义天气预报组件。用户可以通过选择不同城市来获取相应的天气信息,页面会显示当前城市的天气图标、温度及天气描述。这一功能适合用于动态展示天气信息的小型应用。 关键词 UI互动应用天气预报数据绑定动态展示状态管理 一、功能说明 自定义…...
Springboot @Transactional使用时需注意的几个问题
一、事务的隔离级别 在Springboot应用中,如果我们想实现方法一旦执行有异常产生,就触发事务回滚,可以在方法上面添加Transactional注解。如果应用采用mysql数据库,虽然mysql本身也有事务隔离机制,但在Sping数据库的应…...
数字经济下的 AR 眼镜
目录 1. 📂 AR 眼镜发展历史 1.1 AR 眼镜相关概念 1.2 市面主流 XR 眼镜 1.3 AR 眼镜大事记 1.4 国内外 XR 眼镜 1.5 国内 AR 眼镜四小龙 2. 🔱 关键技术 2.1 AR 眼镜近眼显示原理 2.2 AR 眼镜关键技术 2.3 AR 眼镜技术难点 3. Ὂ…...
力扣150题
88. 合并两个有序数组 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。 **注意:**…...
剑指offer搜索二维矩阵
题目连接 https://leetcode.cn/problems/search-a-2d-matrix-ii/’ 代码 自己想出来的 解法一 初始化两个指针,i0,j列数-1 若此时matrix[i][j]target 则返回true 若此时matrix[i][j]>target,表明在第j列中不可能存在target,因为列是升序的 若此时ma…...
如何设置浏览器不缓存网页
设置浏览器不缓存网页可以通过多种方法实现,以下是一些常见的策略: HTTP响应头控制: Cache-Control:这是最常用的HTTP头之一,用于控制响应的缓存行为。例如: Cache-Control: no-cache, no-store, must-r…...
Iris简单实现Go web服务器
package mainimport ("github.com/kataras/iris" )func main() {app : iris.New() // 实例一个iris对象//配置路由app.Get("/", func(ctx iris.Context) {ctx.WriteString("Hello Iris")})app.Get("/aa", func(ctx iris.Context) {ct…...
后端项目java中字符串、集合、日期时间常用方法
我这里只介绍了项目中最常用的哈,比如像集合有很多,但我们最常用的就是ArrayList。 然后我这里会以javascript中的字符串、数组的方法为基准来实现,有些方法js和java会有些区别也会介绍 字符串 每次修改 String 对象都会创建一个新的对象,而 StringBuffer 可以在同一个对象…...
【Spring事务】深入浅出Spring事务从原理到源码
什么是事务 保证业务操作完整性的一种数据库机制 (driver 驱动)事务特定 ACID A 原子性 (多次操作 要不一起成功 要不一起失败 (部分失败 savepoint)) C 一致性 (事务开始时数据状态,…...
vue.js滑动到顶便锁定位置
<template><div><div class"nav"></div><div class"searchBar" id"searchBar"><ul :class"searchBarFixed true ? isFixed :"> <li>区域<i class"iconfont icon-jiantouxia"…...
EdgeX Core Service 核心服务之 Core Command 命令
EdgeX Core Service 核心服务之 Core Command 命令 一、概述 Core-command(通常称为命令和控制微服务)可以代表以下角色向设备和传感器发出命令或动作: EdgeX Foundry中的其他微服务(例如,本地边缘分析或规则引擎微服务)EdgeX Foundry与同一系统上可能存在的其他应用程序…...
掌握常用HTML标签:创建个人简介网页
任务目标 理解HTML文档的基本结构,掌握常见的HTML标签及其用途,创建一个简单的个人简介网页。 学习内容脑图 #mermaid-svg-5GTdqH41gawr4v0h {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
音视频学习(二十五):ts
TS(MPEG-TS,MPEG Transport Stream) 是一种广泛应用于流媒体传输和存储的容器格式。它最早由 MPEG(Moving Picture Experts Group)组织制定,用于视频和音频的压缩编码。在 HLS(HTTP Live Stream…...
10. 虚拟机VMware Workstation Pro下共享Ubuntu和Win11文件夹
本文记录当前最新版虚拟机VMware Workstation Pro(2024.12)如何在win11下共享文件,以实现Windows与Ubuntu互传文件的目的。 1. 创建共享文件夹 1.1 先关闭虚拟机的客户机,打开虚拟机设置 1.2 在虚拟机设置界面找到“选项”->“…...
单元测试mock框架Mockito
为了继续改进 Mockito 并进一步改善单元测试体验,我们希望您升级到 2.1.0!Mockito 遵循语义版本控制,仅在主要版本升级时包含重大更改。在库的生命周期中,重大更改是推出一组全新功能所必需的,这些功能会改变现有行为甚…...
Python从0到100(七十八):神经网络--从0开始搭建全连接网络和CNN网络
前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…...
2024多模态大模型综述最新总结
摘要 随着人工智能技术的快速发展,多模态大模型(MLLM)已成为研究的新热点。这些模型以强大的大型语言模型(LLM)为基础,能够处理和理解多种模态信息,如文本、图像、视频和音频。本文综述了MLLM的…...
Redis——缓存穿透
文章目录 1. 问题介绍1.1 定义1.2 举例 2. 解决方案2.1 方案一:空值缓存2.1.1 做法2.1.2 举例2.1.3 示例代码2.1.4 优点2.1.5 缺点 2.2 方案二:布隆过滤器2.2.1 思想2.2.2 做法2.2.3 示例代码2.2.4 优点2.2.5 缺点 2.3 方案三:限流3. 总结 1.…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
基于鸿蒙(HarmonyOS5)的打车小程序
1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践,很多人以为AI已经强大到不需要程序员了,其实不是,AI更加需要程序员,普通人…...
虚幻基础:角色旋转
能帮到你的话,就给个赞吧 😘 文章目录 移动组件使用控制器所需旋转:组件 使用 控制器旋转将旋转朝向运动:组件 使用 移动方向旋转 控制器旋转和移动旋转 缺点移动旋转:必须移动才能旋转,不移动不旋转控制器…...
