当前位置: 首页 > news >正文

Python中SKlearn的K-means使用详解

文章目录

  • Python中SKlearn的K-means使用详解
    • 一、引言
    • 二、K-means算法原理
    • 三、使用SKlearn进行K-means聚类的步骤
      • 1、导入必要的库
      • 2、生成数据集
      • 3、创建K-means模型并设置参数
      • 4、训练模型
      • 5、预测簇标签
      • 6、可视化结果
    • 四、总结

Python中SKlearn的K-means使用详解

一、引言

K-means算法是一种广泛使用的无监督学习算法,主要用于数据聚类分析。其核心思想是将数据集分成K个簇,使得每个簇内的数据点相似度最大,而簇间的数据点相似度最小。在Python中,我们可以使用sklearn库中的KMeans函数来实现K-means聚类。本文将详细介绍如何在Python中使用sklearn库进行K-means聚类,并提供代码示例。
在这里插入图片描述

二、K-means算法原理

K-means算法的工作原理主要包括两个步骤:分配和更新。首先,随机选择K个数据点作为初始的簇中心。然后,算法进入迭代过程,包括以下两个主要步骤:

  1. 分配:将每个样本指定给最近的簇中心。
  2. 更新:通过计算分配给每个簇中心的所有样本的平均值来更新簇中心。

这个过程会不断重复,直到满足停止条件,比如达到最大迭代次数或者簇中心的变化小于某个阈值。

三、使用SKlearn进行K-means聚类的步骤

1、导入必要的库

在使用sklearn进行K-means聚类之前,需要导入相关的库。

import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

2、生成数据集

为了演示K-means聚类的效果,我们可以使用numpy生成一个简单的数据集。

# 生成随机数据
X = np.random.rand(100, 2)

3、创建K-means模型并设置参数

接下来,创建一个KMeans模型,并设置聚类的个数n_clusters

# 创建KMeans模型,设置聚类个数为3
kmeans = KMeans(n_clusters=3)

4、训练模型

使用fit方法训练模型,该方法会根据数据自动计算出簇中心。

# 训练模型
kmeans.fit(X)

5、预测簇标签

使用predict方法为每个数据点预测其所属的簇。

# 预测簇标签
labels = kmeans.predict(X)

6、可视化结果

为了更直观地展示聚类结果,我们可以使用matplotlib进行可视化。

# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75) # 簇中心点
plt.title('K-means Clustering')
plt.show()

四、总结

K-means聚类算法是一种简单而强大的无监督学习算法,适用于多种数据聚类场景。通过sklearn库,我们可以轻松地在Python中实现K-means聚类,并对数据进行有效的分析和处理。本文提供了一个完整的K-means聚类实现流程,包括算法原理、代码示例和结果可视化,希望对您有所帮助。


版权声明:本博客内容为原创,转载请保留原文链接及作者信息。

参考文章

  • K-means聚类算法 - 维基百科
  • K-means聚类算法详解及Python实现 - CSDN博客

相关文章:

Python中SKlearn的K-means使用详解

文章目录 Python中SKlearn的K-means使用详解一、引言二、K-means算法原理三、使用SKlearn进行K-means聚类的步骤1、导入必要的库2、生成数据集3、创建K-means模型并设置参数4、训练模型5、预测簇标签6、可视化结果 四、总结 Python中SKlearn的K-means使用详解 一、引言 K-mea…...

红帽RHCE认证适用哪些人学习

红帽 RHCE工程师认证有着广泛的适用人群。对于初入 IT 行业的新手来说,RHCE 是快速建立专业基础、提升自身竞争力的绝佳途径。它能帮助新人系统地学习 Linux 系统知识,从基础的安装配置到复杂的网络服务管理,一步一个脚印地构建起坚实的技术框…...

FFmpeg 框架简介和文件解复用

文章目录 ffmpeg框架简介libavformat库libavcodec库libavdevice库 复用(muxers)和解复用(demuxers)容器格式FLVScript Tag Data结构(脚本类型、帧类型)Audio Tag Data结构(音频Tag)V…...

《Java核心技术I》Swing中的边框

边框 BorderFactory静态方法创建边框,凹斜面,凸斜面,蚀刻,直线,蒙版,空白。 边框添加标题,BorderFactory.createTitledBorder 组合边框,BorderFactory.createCompoundBorder JCo…...

MySQL 中的常见错误与排查

在 MySQL 数据库的日常运维中,管理员可能会遇到各种错误。无论是查询性能问题、连接异常、数据一致性问题,还是磁盘空间不足等,及时排查并解决这些问题是保证数据库稳定运行的关键。本文将列出 MySQL 中一些常见的错误及其排查方法。 一、连接…...

SQL 查询方式比较:子查询与自连接

在 SQL 中,子查询和自连接是两种常见的查询方式,它们的功能虽然可以相同,但实现的方式不同。本文通过具体示例,深入探讨这两种查询方式,并配合数据展示,帮助大家理解它们的使用场景和差异。 数据示例 假设…...

Linux下学【MySQL】所有常用类型详解( 配实操图 通俗易懂 )

每日激励:“当你觉得你会幸运时,幸运就会眷顾你,所以努力吧,只要你把事情做好,并觉得你会幸运,你将会变得幸运且充实。” 绪论​: 本章继续学习MySQL的知识,本章主要讲到mysql中的所…...

Gin-vue-admin(1):环境配置和安装

目录 环境配置如果443网络连接问题,需要添加代理服务器 后端运行前端运行 环境配置 git clone https://gitcode.com/gh_mirrors/gi/gin-vue-admin.git到server文件目录下 go mod tidygo mod tidy 是 Go 语言模块系统中的一个命令,用于维护 go.mod 文件…...

如何在centos系统上挂载U盘

在CentOS上挂载NTFS格式的U盘,需要执行一系列步骤,包括识别U盘设备、安装必要的软件、创建挂载点,并最终挂载U盘。以下是在CentOS上挂载NTFS格式U盘的详细步骤: 一、准备工作 确认CentOS版本: 确保你的CentOS系统已经安装并正常运行。不同版本的CentOS在命令和工具方面可能…...

2024年12月大语言模型最新对比:GPT-4、Claude 3、文心一言等详细评测

前言 随着人工智能技术的快速发展,大语言模型(LLM)已经成为了技术领域最热门的话题。本文将详细对比目前主流的大语言模型,帮助大家选择最适合的工具。 一、OpenAI GPT系列 1. GPT-4 核心优势: 多模态理解能力强 逻辑推理能力出色 创造…...

openjdk17 从C++视角看 String的intern的jni方法JVM_InternString方法被gcc编译器连接

symbols-unix 文件部分内容 JVM_IHashCode JVM_InitClassName JVM_InitStackTraceElement JVM_InitStackTraceElementArray JVM_InitializeFromArchive JVM_InternString 要理解在 symbols-unix 文件中包含 JVM_InternString 方法的原因,我们需要从构建过程、符号…...

day16 python(4)——UnitTest

【没有所谓的运气🍬,只有绝对的努力✊】 目录 1、UnitTest框架介绍 1.1 UnitTest框架 1.2 unitTest的组成(5部分) 1.2.1 TestCase(测试用例) 1.2.2 TestSuit 和 TestRunner 【方法1】 【方法2】 1…...

Kafka快速扫描

Architecture 系统间解耦,异步通信,削峰填谷 Topic 消息主题,用于存储消息 Partition 分区,通过扩大分区,可以提高存储量 Broker 部署Kafka服务的设备 Leader kafka主分区 Follwer kafka从分区 高性能之道&#xff1a…...

python打包时候遇到问题:ImportError: DLL load failed while importing _ufuncs: 找不到指定的模块

问题:python打包时候遇到问题:ImportError: DLL load failed while importing _ufuncs: 找不到指定的模块 解决方法 pip uninstall scipy pip install scipy总结:卸载出问题的库并重新安装,再次通过pyinstaller -F -w xxx.py 打包…...

【6】期末复习C#第6套

1.两个指针变量不能 2.函数可以有也可以没有形参 3.开始执行点是程序中的main函数 4.调用函数时形参和实参各占一个独立的存储单元 5.给指针赋NULL值和地址值 6.函数头和函数体 7.(C)形式参数是局部变量 8.在C语言中,一维数组的定义方…...

开源轮子 - EasyExcel01(核心api)

EasyExcel01 - 核心api 本文整理自掘金大佬 - 竹子爱熊猫 https://juejin.cn/post/7405158045662576640 文章目录 EasyExcel01 - 核心api一:初相识EasyExcel1:写入excel入门2:读取Excel入门 二:数据模型注解1:读写通用…...

SpringBoot3+Vue3开发在线考试系统

项目介绍 项目分为3种角色,分别为:超级管理员、老师、学生。超级管理员,负责系统的设置、角色的创建、菜单的管理、老师的管理等功能,也可以叫做系统管理员;老师角色,负责系统业务的管理,包括学…...

2. Kafka入门-开发环境准备

Kafka入门-开发环境准备 1. 环境准备2. Centos7安装2.1 镜像安装2.2 初始化配置2.3 JDK1.8安装 ---------------------------------------------------------------------------------------------- 1. 环境准备 2. Centos7安装 2.1 镜像安装 2.2 初始化配置 设置系统时区 …...

Halcon中histo_2dim(Operator)算子原理及应用详解

在Halcon中,histo_2dim算子是一个用于计算双通道灰度值图像的直方图的工具。以下是对该算子的原理及应用的详细解释: 一、原理 histo_2dim算子的函数原型为:histo_2dim(Regions, ImageCol, ImageRow : Histo2Dim : : )。 输入参数&#xff…...

TCP 与 UDP

TCP与UDP的区别分析 TCP(传输控制协议)和UDP(用户数据报协议)是互联网协议族(TCP/IP)中的两种重要传输层协议。它们在数据传输的方式、特性以及应用场景方面存在显著差异。以下将从多个方面详细分析TCP与U…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时,需要使用外部低速晶振...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...

Vue3 PC端 UI组件库我更推荐Naive UI

一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日,嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》,海云安高敏捷信创白盒(SCAP)成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天,网络安全已成为企业生存与发展的核心基石,为了解…...

Python学习(8) ----- Python的类与对象

Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...