动态规划<四> 回文串问题(含对应LeetcodeOJ题)
目录
引例
其余经典OJ题
1.第一题
2.第二题
3.第三题
4.第四题
5.第五题
引例
OJ 传送门Leetcode<647>回文子串
画图分析:
使用动态规划解决
原理:能够将所有子串是否是回文的信息保存在dp表中
在使用暴力方法枚举出所有子串,是使用两指针(i,j)依次往后枚举的,且满足i<=j
所以需要建立二维的dp表,在填表时只需填上三角位置即可
1.状态表示:
dp[i][j]表示字符串s的[i,j](i是起始位置,j是结束位置)的这个子串是否是回文
2.状态转移方程
对于线性dp可以采用多画图的方式来分析
3.初始化
因为满足i<=j 并且越界的情况都已经被判断了,是无需做初始化的
4.填表顺序
因为在求dp[i][j]时会用到dp[i+1][j-1]的值,所以填表顺序是整体从下往上,每一行从左往右
5.返回值
返回dp表中true的数量
具体代码
int countSubstrings(string s) {int n=s.size();vector<vector<bool>> dp(n,vector<bool>(n));//创建dp表int ret=0;for(int i=n-1;i>=0;--i)//填表{for(int j=i;j<n;++j)//从i位置开始往后枚举{if(s[i]==s[j]){dp[i][j]=i+1<j? dp[i+1][j-1]:true;}if(dp[i][j]) ++ret;}}return ret;//返回}
其余经典OJ题
1.第一题
OJ 传送门Leetcode<5>最长回文子串
画图分析:
使用动态规划解决
对于本道题是计算最长的回文子串,在上面的例题中已经实现了判断字符串的子串是否是回文,只需在dp表中为true的位置找出最长的回文串
其余的参考上面的例题
5.返回值
在dp表中为true的位置找出最长回文串的起始位置i及长度,返回子串
具体代码:
string longestPalindrome(string s) {int n=s.size();vector<vector<bool>> dp(n,vector<bool>(n));int begin=0,len=1;for(int i=n-1;i>=0;--i){for(int j=i;j<n;++j){if(s[i]==s[j]){dp[i][j]=i+1<j? dp[i+1][j-1]:true;}if(dp[i][j] && j-i+1>len){begin=i;len=j-i+1;}}}return s.substr(begin,len);}
2.第二题
OJ 传送门Leetcode<1745>分割回文串IV
画图分析:
使用动态规划来解决
对于本题是将字符串划分为三子串,只要每个子串是回文串即可
这里可以两下标i,j来划分这个字符串
此时只需要根据上面例题所实现的dp表来逐步划分区间判断
具体代码:
bool checkPartitioning(string s) {int n=s.size();//用dp把所有的子串是否是回文预处理一下vector<vector<bool>> dp(n,vector<bool>(n));for(int i=n-1;i>=0;--i){for(int j=i;j<n;++j){if(s[i]==s[j]){dp[i][j]=i+1<j? dp[i+1][j-1]:true;}}}//枚举所有的第二个子串的起始位置及结束位置for(int i=1;i<n-1;++i){for(int j=i;j<n-1;++j){if(dp[0][i-1] && dp[i][j] && dp[j+1][n-1]) return true;}}return false;}
3.第三题
OJ 传送门Leetcode<132>分割回文串II
画图分析:
使用动态规划来解决
1.状态表示 ---经验+题目要求
dp[i]表示字符串s.substr(0,i+1)这个子串要分割为回文串的最少分割次数
2.状态转移方程
3.初始化
对于这里的dp表本身在填表时由于j>0是不会访问越界的,但题目求得是最小值
在求dp[i]=min(dp[j-1]+1,dp[i])时,若初始化时都0时,dp[i]=0,是会影响求min的,因此初始化为INT_MAX
4.填表顺序 ------从左往右
5.返回值-------dp[n-1]
具体代码:
int minCut(string s) {//预处理一下int n=s.size();vector<vector<bool>> IsPal(n,vector<bool>(n));for(int i=n-1;i>=0;--i)for(int j=i;j<n;++j)if(s[i]==s[j])IsPal[i][j]=i+1<j? IsPal[i+1][j-1]:true;vector<int> dp(n,INT_MAX); for(int i=0;i<n;++i){if(IsPal[0][i]) dp[i]=0;else{for(int j=1;j<=i;++j)if(IsPal[j][i]) dp[i]=min(dp[j-1]+1,dp[i]);}}return dp[n-1];}
4.第四题
OJ 传送门Leetcode<516>最长回文子序列
画图分析:
使用动态规划解决
1.状态表示
dp[i]表示以i位置为结尾的所有子序列中,最长回文子序列的长度
当使用此状态表示来求解状态转移方程时
当求解dp[i]时,因为此题是子序列,所以需要用到dp[i-1],dp[i-2],....,而dp表中存的只是长度,当在每种结果后添加字符s[i]后,并不能保证是继续是回文串,因此推导不出状态转移方程
这时可以借用上面例题的方法来解决这题
状态表示:
dp[i][j]表示s字符串[i,j]区间内的所有子序列,最长回文子序列的长度
2.状态转移方程
3.初始化
对于本题可以不用初始化,会越界的位置为i==j,而这些位置已经判断过了
4.填表顺序
整体从上往下,每一行从左往右
5.返回值 dp[0][n-1]
具体代码:
int longestPalindromeSubseq(string s) {int n=s.size();vector<vector<int>> dp(n,vector<int>(n));for(int i=n-1;i>=0;--i){for(int j=i;j<n;++j){if(s[i]==s[j]){if(i==j) dp[i][j]=1;else dp[i][j]=dp[i+1][j-1]+2;}elsedp[i][j]=max(dp[i+1][j],dp[i][j-1]);}}return dp[0][n-1];}
5.第五题
OJ 传送门Leetcode<1312>让字符串成为回文串的最少插入次数
画图分析:
使用动态规划解决
1.状态表示 根据经验+题目要求
dp[i][j]表示:s字符串[i,j]区间的子串,让它变为回文串的最小操作次数
2.状态转移方程---认识根据s[i]与s[j]的关系来判断
3.初始化:
4.填表顺序
整体从下往上,每一行从左往右
5.返回值 dp[0][n-1]
具体代码:
int minInsertions(string s) {int n=s.size();vector<vector<int>> dp(n,vector<int>(n));for(int i=n-1;i>=0;--i){for(int j=i+1;j<n;++j){if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1];else dp[i][j]=min(dp[i][j-1],dp[i+1][j])+1;}}return dp[0][n-1];}
相关文章:

动态规划<四> 回文串问题(含对应LeetcodeOJ题)
目录 引例 其余经典OJ题 1.第一题 2.第二题 3.第三题 4.第四题 5.第五题 引例 OJ 传送门Leetcode<647>回文子串 画图分析: 使用动态规划解决 原理:能够将所有子串是否是回文的信息保存在dp表中 在使用暴力方法枚举出所有子串,是…...

跨模态知识迁移:基于预训练语言模型的时序数据建模
在NLP和CV领域,通常通过在统一的预训练模型上进行微调,能够在各自领域的下游任务中实现SOTA(最先进)的结果。然而,在时序预测领域,由于数据量相对较少,难以训练出一个统一的预训练模型来覆盖所有…...

重温设计模式--职责链模式
文章目录 职责链模式的详细介绍C 代码示例C示例代码2 职责链模式的详细介绍 定义与概念 职责链模式(Chain of Responsibility Pattern)是一种行为型设计模式,它旨在将请求的发送者和多个接收者解耦,让多个对象都有机会处理请求&a…...

git冲突解决
git冲突解决 最近遇到了一次git冲突的问题 起因是因为最近公司数据推送部分重构,负责重构的同事就改动了我的一小部分推送的代码,然后等我开发完合并到远程master的时候,报了merge冲突。我对于git工具确实不是很熟练,只是学习了…...
Java学习笔记(14)--面向对象编程
面向对象基础 学习资料来自多态 - Java教程 - 廖雪峰的官方网站 目录 面向对象基础 Override 多态 举个例子 覆写Object方法 调用super final 练习 小结 Override 在继承关系中,子类如果定义了一个与父类方法签名完全相同的方法,被称为覆写&…...
《Swift 字面量》
《Swift 字面量》 介绍 在 Swift 编程语言中,字面量是一种表示源代码中固定值的表达方式。字面量可以直接表示数字、字符串、布尔值等基本数据类型,为编程提供了简洁和直观的方式。Swift 支持多种类型的字面量,包括整数字面量、浮点数字面量…...
数据库 SQL 常用语句全解析
数据库 SQL 常用语句全解析 在数据库领域,SQL(Structured Query Language)作为标准语言,掌控着数据的查询、插入、更新与删除等关键操作。无论是新手入门数据库,还是经验丰富的开发者日常工作,熟练掌握 SQ…...
SQLite 命令
关于《SQLite 命令》的文章,我可以为您概述一些关键点。SQLite是一个轻量级的数据库管理系统,它被广泛用于各种应用程序中。SQLite命令主要分为两类:一类是SQL命令,另一类是SQLite特定的点命令。 SQL命令:这些命令用于…...

本地如何启动casdoor
1、下载代码 GitHub - casdoor/casdoor at v1.777.0 下载对应tag的代码,我这里选择的时v1.777.0版本 通过网盘分享的文件:casdoor-1.777.0.zip 链接: https://pan.baidu.com/s/1fPNqyJYeyfZnem_LtEc0hw 提取码: avpd 2、启动后端 1、使用goland编译…...

目标检测-R-CNN
R-CNN在2014年被提出,算法流程可以概括如下: 候选区域生成:利用选择性搜索(selective search)方法找出图片中可能存在目标的候选区域(region proposal) CNN网络提取特征:对候选区域进行特征提取(可以使用AlexNet、VGG等网络) 目…...
【持续更新】Github实用命令
Intro 最近高强度使用github,遂小计于此作为备忘。 Basic github是一个代码管理软件,能够track文件变动并且管理版本,是当代coding必不可少的工具。当你安装好github在本地以后,你可以通过以下命令初始化当前文件夹(…...

docker 容器的基本使用
docker 容器 一、docker是什么? 软件的打包技术,就是将算乱的多个文件打包为一个整体,打包技术在没有docker容器之前,一直是有这种需求的,比如上节课我把我安装的虚拟机给你们打包了,前面的这种打包方式是…...
css让按钮放在最右侧
要将 el-button 按钮放在最右侧,可以使用多种方法,具体取决于使用的布局方式和样式库。以下是几种常见的解决方案: 方法 1:使用 CSS Flexbox Flexbox 是一种非常灵活的布局方式,可以轻松实现水平或垂直对齐。你可以将…...

8K+Red+Raw+ProRes422分享5个影视级视频素材网站
Hello,大家好,我是后期圈! 在视频创作中,电影级的视频素材能够为作品增添专业质感,让画面更具冲击力。无论是广告、电影短片,还是品牌宣传,高质量的视频素材都是不可或缺的资源。然而ÿ…...

Linux网络——UDP的运用
Linux网络——UDP的运用 文章目录 Linux网络——UDP的运用一、引入二、服务端实现2.1 创建socket套接字2.2 指定网络接口并bind2.3 接收数据并处理2.4 整体代码2.5 IP的绑定的细节 三、用户端实现3.1 创建套接字3.2 指定网络接口3.3 发生数据并接收3.4 绑定问题 四、代码五、UD…...

项目亮点案例
其实对我来说是日常操作,但是如果在面试的时候面试者能把日常的事情总结好发出来,其实足矣。 想让别人认同项目,选取的示例需要包含以下要素: 亮点项目四要素:明确的目标,问题点,解决方法和结果…...
Retrofit源码分析:动态代理获取Api接口实例,解析注解生成request,线程切换
目录 一,Retrofit的基本使用 1.定义api接口 2.创建Retrofit实例 3.获取api接口实例发起请求 二,静态代理和动态代理 1,静态代理 2,动态代理 三,动态代理获取Api接口实例 四,解析接口方法注解&…...

范德蒙矩阵(Vandermonde 矩阵)简介:意义、用途及编程应用
参考: Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares Stephen Boyd and Lieven Vandenberghe 书的网站: https://web.stanford.edu/~boyd/vmls/ Vandermonde 矩阵简介:意义、用途及编程应用 在数学和计算科学中&a…...

【中标麒麟服务器操作系统实例分享】java应用DNS解析异常分析及处理
了解更多银河麒麟操作系统全新产品,请点击访问 麒麟软件产品专区:https://product.kylinos.cn 开发者专区:https://developer.kylinos.cn 文档中心:https://document.kylinos.cn 情况描述 中标麒麟服务器操作系统V7运行在 ARM…...

网安瞭望台第17期:Rockstar 2FA 故障催生 FlowerStorm 钓鱼即服务扩张现象剖析
国内外要闻 Rockstar 2FA 故障催生 FlowerStorm 钓鱼即服务扩张现象剖析 在网络安全的复杂战场中,近期出现了一个值得关注的动态:名为 Rockstar 2FA 的钓鱼即服务(PhaaS)工具包遭遇变故,意外推动了另一个新生服务 Flo…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...