当前位置: 首页 > news >正文

神经网络-LeNet

 LeNet在1990年被提出,是一系列网络的统称,包括了LeNet1~LeNet5,对于神经网络的学习者来说,大家对下面这个图一定很熟悉,该图是对LeNet的简化展示。

 

在LeNet中已经提出了卷积层、Pooling层等概念,只是但是由于缺乏大量数据和计算机硬件资源限制,导致LeNet的表现并不理想。

LeNet网络结构

LeNet的构成很简单,包括了基础的卷积层、池化层和全连接层,原始的LeNet使用的是灰度图像,下面示例中使用彩色图像进行说明,不影响网络的理解。

  • 定义网络层

# 定义网络
class LeNet(nn.Module):                    #继承来着nn.Module的父类def __init__(self):  # 初始化网络#super()继承父类的构造函数,多继承需用到super函数super(LeNet, self).__init__()# 定义卷积层,[深度,卷积核数,卷积核大小]self.conv1 = nn.Conv2d(3, 16, 5)# 最大池化,[核大小,步长]self.pool1 = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(16, 32, 5)self.pool2 = nn.MaxPool2d(2, 2)# 全连接层self.fc1 = nn.Linear(32*5*5, 120)self.fc2 = nn.Linear(120, 84)# 根据训练项目,调整类别数self.fc3 = nn.Linear(84, 10)#图像参数变化def forward(self, x):            # input(3, 32, 32)        x = F.relu(self.conv1(x))    #output(16, 28, 28)x = self.pool1(x)            # output(16, 14, 14)x = F.relu(self.conv2(x))    # output(32, 10, 10)x = self.pool2(x)            # output(32, 5, 5)x = x.view(-1, 32*5*5)       # output(32*5*5)x = F.relu(self.fc1(x))      # output(120)x = F.relu(self.fc2(x))      # output(84)x = self.fc3(x)              # output(10)return x

网络结构如下,下面将对每一层做一个介绍:

 网络中feature map的变化大致如下:

 

LeNet实例应用

  • 数据预处理

# 对数据进行预处理
transform = transforms.Compose([# 将输入的 numpy.ndarry[h*w*c]转变为[c*h*w],像素点值从[0,255],标准化为[0,1]transforms.ToTensor(),# 将数据进行标注化transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
  • 数据读取

如果是初次使用CIFAR,需要将download打开,也可以自行通过其他方式进行下载。

# 读取数据-训练集
train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=36, shuffle=False, num_workers=0)
  • 定义网络

通过LeNet中的介绍,完成网络的定义。

  • 定义损失函数和优化器

pytorch支持很多损失函数和优化器,可以根据需要进行设定

# 定义损失函数
loss_function = nn.CrossEntropyLoss()# 定义优化器
optimizer = optim.Adam(net.parameters(), lr=0.001)
  • 模型训练

# 开始训练,设置迭代轮次 epoch
for epoch in range(3):# 损失函数值running_loss = 0.0for step, data in enumerate(train_loader, start=0):inputs, labels = data# 清除梯度累加值optimizer.zero_grad()outputs = net(inputs.to(device))# 计算损失值loss = loss_function(outputs, labels.to(device))# 计算梯度loss.backward()# 参数更新optimizer.step()# 输出损失值running_loss += loss.item()if step % 500 == 499:with torch.no_grad():outputs = net(val_image.to(device))# 输出最大概率predict_y = torch.max(outputs, dim=1)[1]accuracy = (predict_y == val_label.to(device)).sum().item() / val_label.size(0)print('[%d, %5d] train_Loss:%.3f tese_accuracy: %.3f' % (epoch + 1, step + 1, running_loss/500, accuracy))running_loss = 0.0print('train finished')
  • 保存模型

# 保存模型
save_path = './Lenet.pth'
torch.save(net.state_dict(), save_path)

补充

  • Pytorch中tensor的顺序是:[batch, channel, height, width]

  • 卷积层中计算输出大小

 

  • W表示输入图像的Weight,一般Weight=hight

  • F表示核的大小,核大小一般为F * F

  • P表示Padding,Conv2d中默认是0

  • S表示步长

因此对于32*32的输入,在该网络中Output=(32-5+2*0)/1 +1 = 28

  • 池化层只改变特征的高和宽,不改变深度

因此对于16*28*28,经过MaxPooling后变成了16*14*14

相关文章:

神经网络-LeNet

LeNet在1990年被提出,是一系列网络的统称,包括了LeNet1~LeNet5,对于神经网络的学习者来说,大家对下面这个图一定很熟悉,该图是对LeNet的简化展示。 在LeNet中已经提出了卷积层、Pooling层等概念,只是但是由…...

es 中 terms set 使用

在 Elasticsearch 中,terms_set 查询通常用于在一个字段上进行多值匹配,并支持设置一个条件(例如最小匹配数量),让查询结果更具灵活性。为了展示如何使用 terms_set 查询,我们首先会创建一个索引&#xff0…...

绩效考核试题

1.2.绩效考核 ()通过财务、客户、内部运营、学习与成长4个角度,将组织战略目标逐层分解转化为细化指标,有差异地针对不同的指标进行不同时期的绩效评估,有助于组织战略目标的实现。 A目标管理法 B平衡计分卡法 C硬性分…...

停车管理系统:构建安全、便捷的停车环境

Tomcat 简介 只要学习Java Web项目就不得不学习Tomcat。Tomcat是一种免费的开源的一种Java Web项目的容器,完美继承了 Apache服务器的特性,并且里面添加可以自动化运行的Java Web组件,让Java Web项目可以完全的运行到Tomcat里面。对于特大型项…...

十四、从0开始卷出一个新项目之瑞萨RZN2L之栈回溯(Default_Handler/hartfault)

目录 一、概述 二、参考资料 三、代码 四、日志 五、定位函数调用 六、README和工具 一、概述 软件开发中常见的比较棘手的问题就是hartfault/Default_Handler/dump,俗称跑飞了。 参考cmbacktrace,在瑞萨RZN2L/T2M实现栈回溯,串口打印…...

联通光猫怎么自己改桥接模式?

环境: 联通光猫 ZXHN F677V9 硬件版本号 V9.0 软件版本号 V9.0.0P1T3 问题描述: 联通光猫怎么自己改桥接模式 家里用的是ZXHN F677V9 光猫,最近又搞了个软路由,想改桥接模式 解决方案: 1.拿到最新超级密码&…...

突围边缘:OpenAI开源实时嵌入式API,AI触角延伸至微观世界

当OpenAI宣布开源其名为openai-realtime-embedded-sdk的实时嵌入式API时,整个科技界都为之震惊。这一举动意味着,曾经遥不可及的强大AI能力,如今可以被嵌入到像ESP32这样的微型控制器中,真正地将AI的触角延伸到了物联网和边缘计算…...

springBoot Maven 剔除无用的jar引用

目录 Used undeclared dependencies found Unused declared dependencies found 当项目经过一段时间的开发和维护后,经常会遇到项目打包速度变慢的问题。这通常与项目中包含大量的jar依赖有关,这些依赖之间的关系错综复杂。这种情况在项目维护过程中是…...

malloc 分配大堆块(128KB)的一次探索

前言 一次意外执行了 malloc(0x5000)&#xff0c;结构使用 gdb 调试发现其分配的位置在 TLS 区域&#xff0c;这令我不解&#xff08;&#xff1a;最后去看了下 malloc 源码和 mmap 源码实现&#xff0c;发现似乎可能是 gdb 插件的问题&#xff0c;乐 场景复现 #include <…...

Android -- 双屏异显之方法二

Android – 双屏异显之方法二: DisplayManager PS: 1. 使用改方法主板需连接至少两个输出显示屏&#xff1b; 2. 副屏内部实现与MediaRouter下一样&#xff1b;使用方法 # 主屏activity内&#xff1a; private SecondDisplay secondDisplay;private void dualScreen3288() {D…...

电脑使用CDR时弹出错误“计算机丢失mfc140u.dll”是什么原因?“计算机丢失mfc140u.dll”要怎么解决?

电脑使用CDR时弹出“计算机丢失mfc140u.dll”错误&#xff1a;原因与解决方案 在日常电脑使用中&#xff0c;我们时常会遇到各种系统报错和文件丢失问题。特别是当我们使用某些特定软件&#xff0c;如CorelDRAW&#xff08;简称CDR&#xff09;时&#xff0c;可能会遇到“计算…...

使用RDMA技术构建无损网络

如何使用RDMA构建无损网络&#xff1f; 在深入研究RDMA和无损网络领域后&#xff0c;会经常遇到两个基本问题&#xff1a;为什么采用无损网络至关重要&#xff1f;这些先进技术有什么优势&#xff1f; 无损网络是一种新型的网络技术&#xff0c;它可以在不丢失数据包的情况下传…...

vscode 识别git目录

vscode 偶尔无法识别使用git 新托管的项目。 以下是我提供的解决方案——重启 git.enabled VS Code配置问题&#xff1a; 有时候&#xff0c;VS Code的配置可能会导致无法识别.git文件夹。确保你的VS Code配置中启用了Git的相关功能。你可以通过”Settings”&#xff08;设置…...

OpenCV相机标定与3D重建(26)计算两个二维点集之间的部分仿射变换矩阵(2x3)函数 estimateAffinePartial2D()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 计算两个2D点集之间的具有4个自由度的最优有限仿射变换。 cv::estimateAffinePartial2D 是 OpenCV 库中的一个函数&#xff0c;用于计算两个二维…...

StarRocks 生产部署一套集群,存储空间如何规划?

背景&#xff1a;StarRocks 3.2&#xff0c;存储一体 使用场景&#xff1a;多分析、小查询多单但不高、数据量几百T FE 存储 由于 FE 节点仅在其存储中维护 StarRocks 的元数据&#xff0c;因此在大多数场景下&#xff0c;每个 FE 节点只需要 100 GB 的 HDD 存储&#xff0c…...

JVM执行引擎JIT深度剖析

前端编译与后端编译 Java 程序的编译过程是分两个部分的。一个部分是从java文件编译成为class文件&#xff0c;这一部分也称为前端编译。另一个部分则是这些class文件&#xff0c;需要进入到 JVM 虚拟机&#xff0c;将这些字节码指令编译成操作系统识别的具体机器指令。这一部…...

【DOCKER】基于DOCKER的服务之DUFS

文件上传下载服务器&#xff1a;https://github.com/sigoden/dufs # 拉取镜像 docker pull sigoden/dufs# 创建数据卷文件夹 mkdir -p /data/.docker/volumes/dufs# 创建容器 docker run -id --restartalways --name dufs \-p 51080:5000 \-v /data/.docker/volumes/dufs:/dat…...

加密货币地址的基本概念

什么是地址&#xff1f; 在日常生活中&#xff0c;地址可能指房屋、电子邮件或官网的位置&#xff0c;用来精确定位在系统中的特定位置或端点。在加密货币领域&#xff0c;地址也起着类似的基础作用&#xff0c;只不过是在数字环境中。 加密货币地址是区块链网络中使用的唯一…...

如何在 Linux 服务器上部署 Pydio Cells 教程

简介 Pydio Cells 是一个开源的文档共享和协作平台&#xff0c;专为你的组织设计。它允许你在组织内部分享文档和文件&#xff0c;并让你完全掌控文档共享环境。 在本教程中&#xff0c;我们将向你展示如何在 Alma Linux 9 服务器上安装 Pydio Cells。你将使用 MariaDB 数据库…...

Halcon例程代码解读:安全环检测(附源码|图像下载链接)

安全环检测核心思路与代码详解 项目目标 本项目的目标是检测图像中的安全环位置和方向。通过形状匹配技术&#xff0c;从一张模型图像中提取安全环的特征&#xff0c;并在后续图像中识别多个实例&#xff0c;完成检测和方向标定。 实现思路 安全环检测分为以下核心步骤&…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端&#xff08;即页面 JS / Web UI&#xff09;与客户端&#xff08;C 后端&#xff09;的交互机制&#xff0c;是 Chromium 架构中非常核心的一环。下面我将按常见场景&#xff0c;从通道、流程、技术栈几个角度做一套完整的分析&#xff0c;特别适合你这种在分析和改…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...