神经网络-LeNet

LeNet在1990年被提出,是一系列网络的统称,包括了LeNet1~LeNet5,对于神经网络的学习者来说,大家对下面这个图一定很熟悉,该图是对LeNet的简化展示。

在LeNet中已经提出了卷积层、Pooling层等概念,只是但是由于缺乏大量数据和计算机硬件资源限制,导致LeNet的表现并不理想。
LeNet网络结构
LeNet的构成很简单,包括了基础的卷积层、池化层和全连接层,原始的LeNet使用的是灰度图像,下面示例中使用彩色图像进行说明,不影响网络的理解。
-
定义网络层
# 定义网络
class LeNet(nn.Module): #继承来着nn.Module的父类def __init__(self): # 初始化网络#super()继承父类的构造函数,多继承需用到super函数super(LeNet, self).__init__()# 定义卷积层,[深度,卷积核数,卷积核大小]self.conv1 = nn.Conv2d(3, 16, 5)# 最大池化,[核大小,步长]self.pool1 = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(16, 32, 5)self.pool2 = nn.MaxPool2d(2, 2)# 全连接层self.fc1 = nn.Linear(32*5*5, 120)self.fc2 = nn.Linear(120, 84)# 根据训练项目,调整类别数self.fc3 = nn.Linear(84, 10)#图像参数变化def forward(self, x): # input(3, 32, 32) x = F.relu(self.conv1(x)) #output(16, 28, 28)x = self.pool1(x) # output(16, 14, 14)x = F.relu(self.conv2(x)) # output(32, 10, 10)x = self.pool2(x) # output(32, 5, 5)x = x.view(-1, 32*5*5) # output(32*5*5)x = F.relu(self.fc1(x)) # output(120)x = F.relu(self.fc2(x)) # output(84)x = self.fc3(x) # output(10)return x
网络结构如下,下面将对每一层做一个介绍:

网络中feature map的变化大致如下:

LeNet实例应用
-
数据预处理
# 对数据进行预处理
transform = transforms.Compose([# 将输入的 numpy.ndarry[h*w*c]转变为[c*h*w],像素点值从[0,255],标准化为[0,1]transforms.ToTensor(),# 将数据进行标注化transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
-
数据读取
如果是初次使用CIFAR,需要将download打开,也可以自行通过其他方式进行下载。
# 读取数据-训练集
train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=36, shuffle=False, num_workers=0)
-
定义网络
通过LeNet中的介绍,完成网络的定义。
-
定义损失函数和优化器
pytorch支持很多损失函数和优化器,可以根据需要进行设定
# 定义损失函数
loss_function = nn.CrossEntropyLoss()# 定义优化器
optimizer = optim.Adam(net.parameters(), lr=0.001)
-
模型训练
# 开始训练,设置迭代轮次 epoch
for epoch in range(3):# 损失函数值running_loss = 0.0for step, data in enumerate(train_loader, start=0):inputs, labels = data# 清除梯度累加值optimizer.zero_grad()outputs = net(inputs.to(device))# 计算损失值loss = loss_function(outputs, labels.to(device))# 计算梯度loss.backward()# 参数更新optimizer.step()# 输出损失值running_loss += loss.item()if step % 500 == 499:with torch.no_grad():outputs = net(val_image.to(device))# 输出最大概率predict_y = torch.max(outputs, dim=1)[1]accuracy = (predict_y == val_label.to(device)).sum().item() / val_label.size(0)print('[%d, %5d] train_Loss:%.3f tese_accuracy: %.3f' % (epoch + 1, step + 1, running_loss/500, accuracy))running_loss = 0.0print('train finished')
-
保存模型
# 保存模型
save_path = './Lenet.pth'
torch.save(net.state_dict(), save_path)
补充
-
Pytorch中tensor的顺序是:[batch, channel, height, width]
-
卷积层中计算输出大小

-
W表示输入图像的Weight,一般Weight=hight
-
F表示核的大小,核大小一般为F * F
-
P表示Padding,Conv2d中默认是0
-
S表示步长
因此对于32*32的输入,在该网络中Output=(32-5+2*0)/1 +1 = 28
-
池化层只改变特征的高和宽,不改变深度
因此对于16*28*28,经过MaxPooling后变成了16*14*14
相关文章:
神经网络-LeNet
LeNet在1990年被提出,是一系列网络的统称,包括了LeNet1~LeNet5,对于神经网络的学习者来说,大家对下面这个图一定很熟悉,该图是对LeNet的简化展示。 在LeNet中已经提出了卷积层、Pooling层等概念,只是但是由…...
es 中 terms set 使用
在 Elasticsearch 中,terms_set 查询通常用于在一个字段上进行多值匹配,并支持设置一个条件(例如最小匹配数量),让查询结果更具灵活性。为了展示如何使用 terms_set 查询,我们首先会创建一个索引࿰…...
绩效考核试题
1.2.绩效考核 ()通过财务、客户、内部运营、学习与成长4个角度,将组织战略目标逐层分解转化为细化指标,有差异地针对不同的指标进行不同时期的绩效评估,有助于组织战略目标的实现。 A目标管理法 B平衡计分卡法 C硬性分…...
停车管理系统:构建安全、便捷的停车环境
Tomcat 简介 只要学习Java Web项目就不得不学习Tomcat。Tomcat是一种免费的开源的一种Java Web项目的容器,完美继承了 Apache服务器的特性,并且里面添加可以自动化运行的Java Web组件,让Java Web项目可以完全的运行到Tomcat里面。对于特大型项…...
十四、从0开始卷出一个新项目之瑞萨RZN2L之栈回溯(Default_Handler/hartfault)
目录 一、概述 二、参考资料 三、代码 四、日志 五、定位函数调用 六、README和工具 一、概述 软件开发中常见的比较棘手的问题就是hartfault/Default_Handler/dump,俗称跑飞了。 参考cmbacktrace,在瑞萨RZN2L/T2M实现栈回溯,串口打印…...
联通光猫怎么自己改桥接模式?
环境: 联通光猫 ZXHN F677V9 硬件版本号 V9.0 软件版本号 V9.0.0P1T3 问题描述: 联通光猫怎么自己改桥接模式 家里用的是ZXHN F677V9 光猫,最近又搞了个软路由,想改桥接模式 解决方案: 1.拿到最新超级密码&…...
突围边缘:OpenAI开源实时嵌入式API,AI触角延伸至微观世界
当OpenAI宣布开源其名为openai-realtime-embedded-sdk的实时嵌入式API时,整个科技界都为之震惊。这一举动意味着,曾经遥不可及的强大AI能力,如今可以被嵌入到像ESP32这样的微型控制器中,真正地将AI的触角延伸到了物联网和边缘计算…...
springBoot Maven 剔除无用的jar引用
目录 Used undeclared dependencies found Unused declared dependencies found 当项目经过一段时间的开发和维护后,经常会遇到项目打包速度变慢的问题。这通常与项目中包含大量的jar依赖有关,这些依赖之间的关系错综复杂。这种情况在项目维护过程中是…...
malloc 分配大堆块(128KB)的一次探索
前言 一次意外执行了 malloc(0x5000),结构使用 gdb 调试发现其分配的位置在 TLS 区域,这令我不解(:最后去看了下 malloc 源码和 mmap 源码实现,发现似乎可能是 gdb 插件的问题,乐 场景复现 #include <…...
Android -- 双屏异显之方法二
Android – 双屏异显之方法二: DisplayManager PS: 1. 使用改方法主板需连接至少两个输出显示屏; 2. 副屏内部实现与MediaRouter下一样;使用方法 # 主屏activity内: private SecondDisplay secondDisplay;private void dualScreen3288() {D…...
电脑使用CDR时弹出错误“计算机丢失mfc140u.dll”是什么原因?“计算机丢失mfc140u.dll”要怎么解决?
电脑使用CDR时弹出“计算机丢失mfc140u.dll”错误:原因与解决方案 在日常电脑使用中,我们时常会遇到各种系统报错和文件丢失问题。特别是当我们使用某些特定软件,如CorelDRAW(简称CDR)时,可能会遇到“计算…...
使用RDMA技术构建无损网络
如何使用RDMA构建无损网络? 在深入研究RDMA和无损网络领域后,会经常遇到两个基本问题:为什么采用无损网络至关重要?这些先进技术有什么优势? 无损网络是一种新型的网络技术,它可以在不丢失数据包的情况下传…...
vscode 识别git目录
vscode 偶尔无法识别使用git 新托管的项目。 以下是我提供的解决方案——重启 git.enabled VS Code配置问题: 有时候,VS Code的配置可能会导致无法识别.git文件夹。确保你的VS Code配置中启用了Git的相关功能。你可以通过”Settings”(设置…...
OpenCV相机标定与3D重建(26)计算两个二维点集之间的部分仿射变换矩阵(2x3)函数 estimateAffinePartial2D()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 计算两个2D点集之间的具有4个自由度的最优有限仿射变换。 cv::estimateAffinePartial2D 是 OpenCV 库中的一个函数,用于计算两个二维…...
StarRocks 生产部署一套集群,存储空间如何规划?
背景:StarRocks 3.2,存储一体 使用场景:多分析、小查询多单但不高、数据量几百T FE 存储 由于 FE 节点仅在其存储中维护 StarRocks 的元数据,因此在大多数场景下,每个 FE 节点只需要 100 GB 的 HDD 存储,…...
JVM执行引擎JIT深度剖析
前端编译与后端编译 Java 程序的编译过程是分两个部分的。一个部分是从java文件编译成为class文件,这一部分也称为前端编译。另一个部分则是这些class文件,需要进入到 JVM 虚拟机,将这些字节码指令编译成操作系统识别的具体机器指令。这一部…...
【DOCKER】基于DOCKER的服务之DUFS
文件上传下载服务器:https://github.com/sigoden/dufs # 拉取镜像 docker pull sigoden/dufs# 创建数据卷文件夹 mkdir -p /data/.docker/volumes/dufs# 创建容器 docker run -id --restartalways --name dufs \-p 51080:5000 \-v /data/.docker/volumes/dufs:/dat…...
加密货币地址的基本概念
什么是地址? 在日常生活中,地址可能指房屋、电子邮件或官网的位置,用来精确定位在系统中的特定位置或端点。在加密货币领域,地址也起着类似的基础作用,只不过是在数字环境中。 加密货币地址是区块链网络中使用的唯一…...
如何在 Linux 服务器上部署 Pydio Cells 教程
简介 Pydio Cells 是一个开源的文档共享和协作平台,专为你的组织设计。它允许你在组织内部分享文档和文件,并让你完全掌控文档共享环境。 在本教程中,我们将向你展示如何在 Alma Linux 9 服务器上安装 Pydio Cells。你将使用 MariaDB 数据库…...
Halcon例程代码解读:安全环检测(附源码|图像下载链接)
安全环检测核心思路与代码详解 项目目标 本项目的目标是检测图像中的安全环位置和方向。通过形状匹配技术,从一张模型图像中提取安全环的特征,并在后续图像中识别多个实例,完成检测和方向标定。 实现思路 安全环检测分为以下核心步骤&…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
