当前位置: 首页 > news >正文

空天地遥感数据识别与计算--数据分析如何助力农林牧渔、城市发展、地质灾害监测等行业革新

 在科技飞速发展的时代,遥感数据的精准分析已经成为推动各行业智能决策的关键工具。从无人机监测农田到卫星数据支持气候研究,空天地遥感数据正以前所未有的方式为科研和商业带来深刻变革。然而,对于许多专业人士而言,如何高效地处理、分析和应用遥感数据仍是一个充满挑战的课题。本次内容,致力于为您搭建一条从入门到精通的学习之路,通过领先的AI技术与实战案例帮助您掌握遥感数据处理的核心技能。

通过系统化的模块设计和丰富的实战案例,深入理解和掌握遥感数据的处理与计算

通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。层层递进、结构严谨,帮助您系统性掌握从数据预处理、图像增强、特征提取到机器学习建模的每一个关键环节。

目标:

从基础到高阶的系统化路径:循序渐进,从遥感数据基础知识到复杂的实战案例,适合无基础到中高级用户,帮助您打下扎实的技术基础。

●15个行业领先的实战案例:涵盖农林牧渔、城市发展、地质灾害监测等关键应用领域,让您亲身体验数据分析如何助力行业革新。

●先进技术整合的全流程实践:通过Python和OpenCV的结合,打造从数据采集、处理到模型构建的完整流程,赋予您独立完成遥感分析项目的能力。

●抛弃电脑上全部传统软件:结合ChatGPT智能支持,只用Python和OpenCV实现遥感的全部功能,让您轻松突破技术瓶颈,实现快速上手与高效学习。

●多源数据综合分析:涵盖卫星、无人机和地面各个平台、涵盖多光谱、高光谱、激光多源数据;涵盖线性算法、机器学习、人工智能等层次算法。

第一部分:未来已来——工具与开发环境搭建

1.1 机器学习基础
(1)监督学习

(2)非监督学习

(3)深度学习

1.2 GPT安装与用法

(1)ChatGPT 简介

(2)ChatGPT 使用方法

1.3 Python安装与用法

(1)Python简介

(2)Python的特点

(3)Python的应用场景

(4)安装 Python

(5)Jupyter Notebook

(6)Anaconda

(7)创建第一个程序

第二部分:千里眼——遥感数据应用全流程

2.1 遥感数据获取

(1)遥感定义与原理

(2)常见遥感数据源

(3)遥感数据获取方法

2.2 遥感数据处理

(1)图像去噪

(2)几何校正

(3)大气校正

2.3 遥感数据计算

(1)波段选择

(2)波段计算

2.4 案例实战:计算家乡的土壤成分含量

(1)计算过程

(2)程序实现

(3)计算结果

(4)结果制图

第三部分:地面数据——图像分类

3.1 数据增广

(1)什么是数据增广

(2)数据增广的代码实现

3.2 地面化验数据综合处理

(1)地面数据的作用

(2)地面数据采样方案设计和化验方法

(3)数据读取与初步检查

(4)数据清洗与处理

(5)数据的可视化与分布分析

3.3 程序实现

(1)描述性统计分析

(2)数据分布

(3)相关性分析

(4)数据正态性检验

(5)元素之间的线性回归分析

(6)箱线图和异常值分析

(7)两元素的T检验

3.4 案例实战:自动对农作物进行分类

(1)导入必要的库并准备数据

(2)特征提取(图像降维)

(3)标签编码

(4)训练支持向量机模型

(5)对测试集图片进行分类预测

(6)评估模型性能

(7)使用网格搜索优化SVM参数

(8)使用网格搜索优化SVM参数

(9)使用PCA进行降维

第四部分:无人机数据——目标检测

4.1 制作标签数据

(1)标签数据的重要性

(2)制作和标注机器学习的标签数据

(3)常见的标注格式

(4)LabelImg

(5)标注

(6)标注VOC格式

(7)标注YOLO格式

(9)标注并导出为COCO格式

4.2 无人机多光谱数据综合处理

(1)无人机机载飞行作业

(2)地面同步数据特点

(3)无人机数据处理

4.3 程序实现

(1)数据准备与预处理

(2)环境配置

(3)算法流程

(4)实现基于边缘和轮廓的检测

(5)解释代码

(6)检查结果

4.4 案例实战:自动检测森林火灾范围

(1)林火

(2)环境设置与依赖安装

(3)加载森林图像和对应的标注文件

(4)实现火点检测算法

(5)批量处理森林图像并标记火灾点

第五部分:卫星数据——变化检测

5.1 遥感指数模型

(1)算法与模型库

(2)计算叶绿素含量

5.2 卫星数据综合处理

(1)计算二价铁含量

(2)计算全球环境监测指数

5.3 程序实现

(1)导入必要的库

(2)设置数据路径

(3)加载遥感图像

(4)水体识别算法

(5)变化检测算法

(6)保存变化结果

(7)导出变化统计表

(8)结果展示

5.4 案例实战:自动实现水体动态监测

(1)导入必要的库

(2)加载遥感图像并裁剪到一致大小

(3)计算水体指数 (NDWI)

(4)变化检测

(5)保存变化检测结果

(6)导出变化统计表

第六部分:多源数据——联合分析

6.1 图像自动配准

(1)图像配准

(2)自动配准的步骤

6.2 空天地数据综合处理

(1)图像配准

(2)导入必要的库

(3)读取无人机和卫星图像

(4)生成地理控制点 (GCP)

(5)应用配准算法

(6)保存配准后的无人机图像

(7)保存配准的坐标对应数据

6.3 程序实现

(1)导入必要的库

(2)预处理

(3)特征检测和匹配

(4)图像配准

(5)保存

6.4 案例实战:城市建筑物检测与变化监测

(1)城市建筑物检测与变化监测的原理

(2)图像预处理

(3)建筑物检测

(4)变化检测

(5)输出与可视化

(6)实战

第七部分:研究热点攻关

7.1 案例实战:农田作物分类与产量估算

7.2 案例实战:土地利用与土地覆盖分类

7.3 案例实战:植被健康监测与病害检测

7.4 案例实战:海岸侵蚀监测变化分析

7.5 案例实战:空气污染物浓度遥感监测

7.6 案例实战:沙漠化监测与土地退化分析

7.7 案例实战:城市违章建筑监控

7.8 案例实战:碳汇估算与生态服务分析

7.9 案例实战:地表温度与热岛效应分析

7.10案例实战:地质灾害预测与监测

相关文章:

空天地遥感数据识别与计算--数据分析如何助力农林牧渔、城市发展、地质灾害监测等行业革新

在科技飞速发展的时代,遥感数据的精准分析已经成为推动各行业智能决策的关键工具。从无人机监测农田到卫星数据支持气候研究,空天地遥感数据正以前所未有的方式为科研和商业带来深刻变革。然而,对于许多专业人士而言,如何高效地处…...

Git:查看分支、创建分支、合并分支

一、查看分支 查看的git命令如下: git branch # 列出本地已经存在的分支,并且当前分支会用*标记 git branch -r # 查看远程版本库的分支列表 git branch -a # 查看所有分支列表(包括本地和远程,remotes/开头的表示远程分支&…...

联合目标检测与图像分类提升数据不平衡场景下的准确率

联合目标检测与图像分类提升数据不平衡场景下的准确率 在一些数据不平衡的场景下,使用单一的目标检测模型很难达到99%的准确率。为了优化这一问题,适当将其拆解为目标检测模型和图像分类模型的组合,可以更有效地控制最终效果,尤其…...

Git的简介

文章目录 一.Git是什么二.核心概念三.工作流程四.Git的优势 下载Git 推荐官网下载 官网地址 一.Git是什么 Git是一个分布式版本控制系统,用于跟踪文件的变化并协调多人对同一项目的开发工作。它就像是一个时光机器,能够记录文件在不同时间点的状态&…...

麒麟操作系统服务架构保姆级教程(四)NGINX中间件

如果你想拥有你从未拥有过的东西,那么你必须去做你从未做过的事情 想要在网页上访问到代码那么就需要用到应用服务类中间件,国外的有Nginx,Tomcat等,国内的有金蝶web,东方通的服务中间件(Tongweb&#xff0…...

Glide 自定义圆角、铺满FitXY

在 Android 开发中,使用 Glide 来加载图片时,有时需要对图片进行特定的处理,比如设置圆角或者使图片完全填充到一个视图中(类似于 ImageView 的 scaleType 中的 FitXY)。以下是如何使用 Glide 来实现这些自定义需求的处…...

蓝牙协议——音乐启停控制

手机播放音乐 手机暂停音乐 耳机播放音乐 耳机暂停音乐...

Krita安装krita-ai-diffusion工具搭建comfyui报错没有ComfyUI_IPAdapter_plus解决办法

我们在使用Kirta安装krita-ai-diffusion工具之后搭建comfyui环境需要安装很多扩展文件。 一般正常安装都可以使用了。 但是有一个插件很特别,无论你安装多少遍都会显示缺失,是什么插件这么难搞定呢? 没错,就是我们的ComfyUI_IPAdapter_plus插件。 就像下图一样: 那么怎…...

四相机设计实现全向视觉感知的开源空中机器人无人机

开源空中机器人 基于深度学习的OmniNxt全向视觉算法OAK-4p-New 全景硬件同步相机 机器人的纯视觉避障定位建图一直是个难题: 系统实现复杂 纯视觉稳定性不高 很难选到实用的视觉传感器 为此多数厂家还是采用激光雷达的定位方案。 OAK-4p-New 为了弥合这一差距…...

LightGBM分类算法在医疗数据挖掘中的深度探索与应用创新(上)

一、引言 1.1 医疗数据挖掘的重要性与挑战 在当今数字化医疗时代,医疗数据呈爆炸式增长,这些数据蕴含着丰富的信息,对医疗决策具有极为重要的意义。通过对医疗数据的深入挖掘,可以发现潜在的疾病模式、治疗效果关联以及患者的健康风险因素,从而为精准医疗、个性化治疗方…...

JVM(Java虚拟机)的组成部分详解

摘要: JVM (Java Virtual Machine) 是一个抽象计算模型,它使Java程序可以在任何支持JVM的操作系统上运行,而无需考虑底层硬件架构。本文将深入探讨JVM的内部结构和工作机制,包括类加载器、运行时数据区、执行引擎以及内存管理等关…...

jsp中的四个域对象(Spring MVC)

在Spring MVC中,Model中的数据会被自动放入到请求域(Request Scope)中。也就是说,当我们在控制器中使用model.addAttribute()时,这些属性会被放入到HttpServletRequest对象的属性中。 让我们通过代码来详细解释&#…...

计算机基础知识复习12.24

http和https有那些区别 http是超文本传输协议,信息是明文传输,存在安全风险的问题,https则解决http不安全的缺点,在TCP和HTTP网络层之间加入了SSL/TLS安全协议,使得报文能够加密传输 http连接建立相对简单&#xff0…...

如何使用vscode解决git冲突

在使用VSCode时,遇到Git冲突是很常见的情况。Git冲突是指当多个人同时修改同一个文件的同一行或相邻行时,Git无法自动决定应该保留哪一个修改,需要手动解决这个冲突。 要解决Git冲突,可以按照以下步骤操作: 1. 打开V…...

告别卡顿:CasaOS轻NAS设备安装Gopeed打造高效下载环境

文章目录 前言1. 更新应用中心2.Gopeed安装与配置3. 本地下载测试4. 安装内网穿透工具5. 配置公网地址6. 配置固定公网地址 前言 无论你是需要大量文件传输的专业人士,还是只是想快速下载电影或音乐的普通用户,都会使用到下载工具。如果你对现有的下载工…...

Java 重写(Override)与重载(Overload)

重写 (Override) 重写是子类对父类的允许访问的方法的实现过程进行重新编写!返回值和形参都不能改变。即外壳不变,核心重写! 重写的好处在于子类可以根据需要,定义特定于自己的行为。 也就是说子类能够根据需要实现父类的方法。…...

HDFS与HBase有什么关系?

1 、 HDFS 文件存储系统和 HBase 分布式数据库 HDFS 是 Hadoop 分布式文件系统。 HBase 的数据通常存储在 HDFS 上。 HDFS 为 HBase 提供了高可靠性的底层存储支持。 Hbase 是 Hadoop database ,即 Hadoop 数据库。它是一个适合于非结构化数据存储的数据库, HBase 基于列的…...

CentOS7下的vsftpd服务器和客户端

目录 1、安装vsftpd服务器和ftp客户端; 2、配置vsftpd服务器,允许普通用户登录、下载、上传文件; 3、配置vsftpd服务器,允许anonymous用户登录、下载、上传文件; 4、配置vsftpd服务器,允许root用户登录…...

全网最详细Gradio教程系列10——Blocks:底层区块类(下)

全网最详细Gradio教程系列10——Blocks:底层区块类(下) 前言本篇摘要10. Blocks:底层区块类10.4 Blocks Layout:布局10.4.1 行与列1. Rows2. Columns 10.4.2 选项卡和折叠类10.4.3 重渲染.render()10.4.4 Group分组10.…...

嵌入式设备常用性能和内存调试指令

文章目录 嵌入式设备常用性能和内存调试指令内存问题分析性能测试android设备通过NDK 使用SimplePerf 抓取火焰图嵌入式linux抓取特定进程的perf火焰图 杂记 嵌入式设备常用性能和内存调试指令 内存问题分析 安装valgrind,按照如下指令执行应用程序: …...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

LLM基础1_语言模型如何处理文本

基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...

EtherNet/IP转DeviceNet协议网关详解

一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...

LLMs 系列实操科普(1)

写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...

uniapp 字符包含的相关方法

在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...