当前位置: 首页 > news >正文

剑指Offer|LCR 013. 二维区域和检索 - 矩阵不可变

LCR 013. 二维区域和检索 - 矩阵不可变

给定一个二维矩阵 matrix,以下类型的多个请求:

  • 计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2)

实现 NumMatrix 类:

  • NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
  • int sumRegion(int row1, int col1, int row2, int col2) 返回左上角 (row1, col1) 、右下角 (row2, col2) 的子矩阵的元素总和。

示例 1:
在这里插入图片描述

输入: 
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出: 
[null, 8, 11, 12]解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 200
  • -105 <= matrix[i][j] <= 105
  • 0 <= row1 <= row2 < m
  • 0 <= col1 <= col2 < n
  • 最多调用 104sumRegion 方法

法1:暴力

**分析:**两层for循环遍历

时间复杂度 O ( n 2 ) O(n^2) O(n2)

空间复杂度 O ( 1 ) O(1) O(1)

 var NumMatrix = function(matrix) {this.matrix = matrix;
};NumMatrix.prototype.sumRegion = function(row1, col1, row2, col2) {matrix = this.matrix;let result = 0;for (let r = row1; r <= row2; r++) {for (let c = col1; c <= col2; c++) {result += matrix[r][c];}}return result
};const matrix = [[3, 0, 1, 4, 2],[5, 6, 3, 2, 1],[1, 2, 0, 1, 5],[4, 1, 0, 1, 7],[1, 0, 3, 0, 5]
];
var obj = new NumMatrix(matrix);
console.log(obj.sumRegion(2, 1, 4, 3)); // 输出 8
console.log(obj.sumRegion(1, 1, 2, 2)); // 输出 11
console.log(obj.sumRegion(1, 2, 2, 4)); // 输出 12

leetcode上通过不了

法2: 前缀和(Prefix Sum)

分析:

定义一个prefixSum ,比原本的matrix多一行多一列。

prefixSum 中,prefixSum[i][j] 表示从 (0,0)(i-1, j-1) 的区域和。

比如要计算prefixSum[3][3],也就是matrix[3][3]左上角的和。

在这里插入图片描述

28怎么来,要求matrix[3][3]左上角的和,也就是要求

28 = matrix[i - 1][j - 1]      //这个就是matrix[2][2]=1
+ this.prefixSum[i - 1][j]     //prefixSum[2][3]=matrix[2][3]左上角的和=16
+ this.prefixSum[i][j - 1] 	   //prefixSum[3][2]=matrix[3][2]左上角的和=22
- this.prefixSum[i - 1][j - 1];//prefixSum[2][2]=matrix[2][2]左上角的和=11
// 1+16+22-11=28

在这里插入图片描述

可以看出prefixSum[3][2]prefixSum[2][3]有交集prefixSum[2][2],多以最后要减去一个prefixSum[2][2],再加上maxtrix[2][2](图中绿色填充)的。

int sumRegion(int row1, int col1, int row2, int col2)

再看比如说计算sumRegion(1,1,2,2)

this.prefixSum[row2 + 1][col2 + 1] -  // prefixSum[3][3]
this.prefixSum[row1][col2 + 1] -      // prefixSum[1][3]
this.prefixSum[row2 + 1][col1] +      // prefixSum[3][1] 
this.prefixSum[row1][col1];           // prefixSum[1][1]

在这里插入图片描述

时间复杂度 O ( n ) O(n) O(n)

空间复杂度 O ( 1 ) O(1) O(1)

 var NumMatrix = function(matrix) {// 初始化 NumMatrix 类的实例属性 matrixthis.matrix = matrix;const m = matrix.length;const n = matrix[0].length;// 创建一个 m+1 x n+1 的前缀和数组 (多加一行一列是为了方便计算)this.prefixSum = Array(m + 1).fill().map(() => Array(n + 1).fill(0));// 填充前缀和数组for (let i = 1; i <= m; i++) {for (let j = 1; j <= n; j++) {this.prefixSum[i][j] = matrix[i - 1][j - 1] + this.prefixSum[i - 1][j] + this.prefixSum[i][j - 1] - this.prefixSum[i - 1][j - 1];}}    
};NumMatrix.prototype.sumRegion = function(row1, col1, row2, col2) {// 使用前缀和公式计算区域和return this.prefixSum[row2 + 1][col2 + 1] - this.prefixSum[row1][col2 + 1] - this.prefixSum[row2 + 1][col1] + this.prefixSum[row1][col1];
};

相关文章:

剑指Offer|LCR 013. 二维区域和检索 - 矩阵不可变

LCR 013. 二维区域和检索 - 矩阵不可变 给定一个二维矩阵 matrix&#xff0c;以下类型的多个请求&#xff1a; 计算其子矩形范围内元素的总和&#xff0c;该子矩阵的左上角为 (row1, col1) &#xff0c;右下角为 (row2, col2) 。 实现 NumMatrix 类&#xff1a; NumMatrix(…...

aosp15 - Activity生命周期切换

本文探查的是&#xff0c;从App冷启动后到MainActivity生命周期切换的系统实现。 调试步骤 在com.android.server.wm.RootWindowContainer#attachApplication 方法下断点&#xff0c;为了attach目标进程在com.android.server.wm.ActivityTaskSupervisor#realStartActivityLock…...

vxe-table 虚拟滚动的动态响应

虚拟滚动主要是在有限范围内渲染想要显示的数据&#xff0c;主要体现在懒加载数据和动态渲染上。如何提高虚拟滚动的操作性呢&#xff1f;请看本章解析 1.什么是虚拟滚动&#xff1f;代码如何实现&#xff1f; VXE-Table提供了一种名为“虚拟滚动”的功能&#xff0c;该功能可…...

quasar dev 命令卡住很久

别以为这是一个瞬间的截图&#xff0c;其实停留在这里很久很久。 折腾挺久&#xff0c;无论npm run dev:proxy还是 quasar dev&#xff0c;都是一样的情况。 最终解决办法&#xff1a; 有语法问题&#xff0c;通过 quasar build 命令暴露出来错误所在的行数。...

黑盒RCE测试 异或测试

前言 了解了漏洞的原理之后就需要知道 他在哪能出现 并且被利用 这个还是很重要的 异或测试 使用异或&#xff08;XOR&#xff09;运算进行加密解密的原理_异或加密-CSDN博客 异或测试是在 白盒内执行的 一个例题看一下 输入什么都是会报错 这种情况就需要使用 异或计…...

kotlin中泛型中in和out的区别

概念含义 in关键字&#xff08;逆变&#xff09; 在Kotlin泛型中&#xff0c;in关键字主要用于定义逆变&#xff08;Contravariance&#xff09;。它表示一个泛型类型参数可以是指定类型或者它的超类型。简单来说&#xff0c;就是对于类型A和B&#xff0c;如果A是B的子类型&…...

c# iis 解决跨域问题

该错误是一个典型的跨域问题&#xff0c;说明从 http://www.fuc.com 发起的请求被目标服务器&#xff08;https://aip.baidubce.com&#xff09;拒绝&#xff0c;原因是目标服务器未返回正确的 AccessControlAllowOrigin 响应头。 解决方法 1. 了解问题的本质 CORS&#xff08…...

MySQL版本对应的mysql-connector-java版本下载地址

MySQL版本mysql-connector-java版本mysql-connector-java下载地址MySQL安装版下载地址MySQL免安装版下载地址5.1.x5.1.xmysql-connector-java 5.1.xMySQL Installer 5.1.xMySQL Community Server 5.1.x5.5.x5.1.x, 5.5.x mysql-connector-java 5.1.x, mysql-connector-java 5.5…...

【读书笔记】《论语别裁》爱与罪

一、内容摘要 《论语别裁》第01章讨论了孔子关于孝悌的思想&#xff0c;以及其在中国文化中的重要性和复杂性。文中引用了有子的观点&#xff0c;强调孝弟是为人之本。然而&#xff0c;随着历史的发展&#xff0c;孔子的思想也被误解或被用作维护专制统治的工具。通过司马迁的…...

uniApp上传文件踩坑日记

最近在做移动端app&#xff0c;开始接触uniapp。想着直接用PC端的前后端API去做文件上传&#xff0c;但是uniapp的底层把请求拆成了普通请求和文件上传请求&#xff0c;所以不能用一个axios去做所有请求的处理&#xff0c;拆成uni.request和uni.uploadFile去分别处理两种情况。…...

Webhook 是什么?详解其工作原理

在现代技术中&#xff0c;一切都相互连接&#xff0c;每个应用程序通过许多服务的组合和协调实现无缝工作。这种协调是通过 webhooks 实现的。 Webhooks 是基于 HTTP 的回调函数&#xff0c;其中一个服务使用 API 立即通知另一个服务发生的事件。这就是简单的版本。从技术上讲…...

log4j2漏洞复现(CVE-2021-44228)

靶场环境 步骤一&#xff1a;设置出战规则 步骤二&#xff1a;开启靶场 cd vulhub cd log4j cd CVE-2021-44228 docker-compose up -d docker ps 访问端口 靶机开启 步骤三&#xff1a;外带注入 获得dnslog 靶机访问dnslog 得到dnslog的二级域名信息 步骤四&#xff1a;构造…...

tcpdump抓包分析

使用tcpdump进行抓包分析是一个常见的网络诊断和分析任务。以下是如何使用tcpdump进行抓包和分析的一些基本步骤和技巧&#xff1a; 1. 基本抓包 首先&#xff0c;你需要确定要抓取数据包的网络接口。可以使用ifconfig或ip addr命令查看网络接口。然后&#xff0c;使用以下命…...

LearnOpenGL学习(碰撞检测,粒子)

完整代码见&#xff1a;zaizai77/OpenGLTo2DGame: 基于OpenGL制作2D游戏 物体本身的数据来检测碰撞会很复杂&#xff0c;一半使用重叠在物体上的更简单的外形来检测。 AABB - AABB 碰撞 AABB代表的是轴对齐碰撞箱(Axis-aligned Bounding Box)&#xff0c;碰撞箱是指与场景基…...

操作系统(24)提高磁盘I/O速度的途径

前言 操作系统提高磁盘I/O速度的途径多种多样&#xff0c;这些途径旨在减少磁盘访问的延迟和开销&#xff0c;提高数据传输的效率。 一、磁盘高速缓存&#xff08;Disk Cache&#xff09; 磁盘高速缓存是一种在内存中为磁盘数据设置的缓冲区&#xff0c;用于存储磁盘中某些盘块…...

C/C++基础知识复习(45)

1) C 中面向对象编程如何实现数据隐藏&#xff1f; 在 C 中&#xff0c;数据隐藏是通过将类的成员变量和方法的访问权限控制起来实现的。通常&#xff0c;数据隐藏是通过使用 访问控制 机制来实现的&#xff0c;C 提供了三种访问控制修饰符&#xff1a; private: 使成员变量和…...

现代C++锁介绍

文章目录 场景描述&#x1f41e; 初始实现: 非线程安全版本互斥锁: std::mutex使用mutex保护共享资源使用std::lock_guard简化锁的管理 优化读操作: std::shared_mutex多个锁的管理: std::scoped_lock使用std::scoped_lock避免死锁 其他高级锁⏳ 带超时的锁: std::timed_mutex使…...

Squid代理服务器的安装使用

1.简介 Squid代理服务器是一种高效的中间服务器&#xff0c;位于客户端和目标服务器之间&#xff0c;起到了重要的网络中介作用。以下是对Squid代理服务器的详细介绍&#xff1a; 一、功能特点 缓存功能&#xff1a; Squid可以缓存经过它的请求和响应数据。当客户端发起请求时…...

爬虫学习案例8

爬取京东评论信息 采用DrissionPage自动化工具采集&#xff0c;感觉比Selenium工具好&#xff0c;真香。 安装第三方库 pip install DrissionPage pip install pandas pip install pyecharts pip install jieba pip install wordcloud1.安装DrissionPage库 DrissionPage安装…...

深入了解 CouchDB 的 Mango 查询:操作符和限制

CouchDB 是一个基于文档的数据库管理系统,支持 HTTP 协议,拥有强大的同步机制和灵活的数据模型。Mango 查询是 CouchDB 中用于数据检索的现代化查询接口,灵感来自 MongoDB 的查询语法。本文将深入探讨 Mango 查询中的各种操作符和限制,并提供详细的例子和说明,帮助你更好地…...

基于SSM(Spring + Spring MVC + MyBatis)框架搭建一个病人跟踪信息管理系统

基于SSM&#xff08;Spring Spring MVC MyBatis&#xff09;框架搭建一个病人治疗跟踪信息系统是一个相对复杂的项目&#xff0c;涉及到多个模块和功能。以下是一个简要的指导步骤。 1. 环境准备 开发环境&#xff1a;确保安装了Java Development Kit (JDK)&#xff0c;建议…...

U盘文件名变乱码:原因、恢复与预防全解析

一、U盘文件名变乱码现象描述 在日常使用U盘进行数据传输和存储时&#xff0c;我们有时会遇到一个令人头疼的问题&#xff1a;U盘中的文件名突然变成了乱码&#xff0c;无法正常识别或访问。这些乱码文件名可能包含各种奇怪的字符和符号&#xff0c;使得原本有序的文件管理变得…...

EasyGBS国标GB28181公网平台P2P远程访问故障诊断:云端服务端排查指南

随着信息技术的飞速发展&#xff0c;视频监控领域正经历从传统安防向智能化、网络化安防的深刻转变。EasyGBS平台&#xff0c;作为基于国标GB28181协议的视频流媒体平台&#xff0c;为用户提供了强大的视频监控直播功能。然而&#xff0c;在实际应用中&#xff0c;P2P远程访问可…...

一网多平面

“一网多平面”是一种网络架构概念&#xff0c;具体指的是在一张物理网络之上&#xff0c;逻辑划分出“1N”个平面。以下是对“一网多平面”的详细解释&#xff1a; 定义与构成 01一网多平面 指的是在统一的物理网络基础设施上&#xff0c;通过逻辑划分形成多个独立的网络平面…...

animatediff 模型网盘分享

网盘 一、123网盘&#xff0c;不限速 https://www.123pan.com/s/ueQ8jv-OlzPh.html 网盘 网址 animatediff 国外网址https://huggingface.co/guoyww/animatediff/tree/cd71ae134a27ec6008b968d6419952b0c0494cf2 国内镜像在 https://hf-mirror.com/guoyww/animatediff/t…...

ansible play-book玩法

使用ansible-playbook实现安装nginx_ansible 安装nginx-CSDN博客文章浏览阅读1.5k次&#xff0c;点赞14次&#xff0c;收藏19次。本文详细介绍了如何在Linux环境中准备Ansible环境&#xff0c;包括配置主机、下载和安装Ansible&#xff0c;以及使用yum模块和tar包源码安装Nginx…...

MySQL索引-索引的分类和创建

索引类型 数据类型 B树索引Hash索引FullText全文索引 物理存储 聚簇索引二级索引 字段特性 主键索引唯一索引普通索引前缀索引 字段个数 单列索引联合索引 创建索引 创建表时一同创建创建表后单独创建创建表后通过修改表结构创建 可以通过 SHOW INDEX FROM test_table;查看…...

如何给负载均衡平台做好安全防御

在现代网络架构中&#xff0c;负载均衡&#xff08;Load Balancing&#xff09;扮演着至关重要的角色。它不仅负责将流量分配到多个服务器以确保高效的服务交付&#xff0c;还作为第一道防线来抵御外部攻击。为了保护您的应用程序和服务免受潜在威胁&#xff0c;必须对负载均衡…...

HR/TA/HRBP的关系

HR&#xff08;人力资源&#xff09;领域包含 TA&#xff08;人才获取&#xff09;和 HRBP&#xff08;人力资源业务伙伴&#xff09;这两个重要的角色&#xff0c;但它们只是 HR 工作的一部分分支&#xff0c;一般我们说的HR指TA。 1. 人才获取&#xff08;TA&#xff09; 定…...

Docker环境下MySQL数据库持久化部署全攻略

概述 在当今的软件开发领域&#xff0c;Docker容器技术已经成为应用部署和管理的新标准。它不仅简化了应用的部署流程&#xff0c;还为数据管理提供了灵活的解决方案。特别是在涉及到MySQL数据库时&#xff0c;数据持久化是一个不可忽视的重要环节。本文将分享如何在Docker中部…...