当前位置: 首页 > news >正文

[搜广推]王树森推荐系统笔记——矩阵补充最近邻查找

视频合集链接

矩阵补充(工业界不常用)

模型结构

  • embedding可以把 用户ID 或者 物品ID 映射成向量
  • 输入用户ID 和 物品ID,输出向量的内积(一个实数),内积越大说明用户对这个物品越感兴趣
  • 模型中的两个embedding层不共享参数
    在这里插入图片描述

基本想法

  • 用户 embedding 参数矩阵记作 A A A。第 u u u 号用户对应矩阵第 u u u 列,记作向量 a u a_u au
  • 物品 embedding 参数矩阵记作 B B B。第 i i i 号物品对应矩阵第 i i i 列,记作向量 b i b_i bi
  • 內积 < a u , b i > <a_u,b_i> <au,bi>是第 u u u 号用户对第 i i i 号物品兴趣的预估值。
  • 训练模型的目的是学习矩阵 A A A B B B ,使得预估值拟合真实观测的兴趣分数。

在这里插入图片描述

数据集

  • (用户ID,物品ID,兴趣分数)的集合,记作 Ω = { ( u , i , y ) } Ω =\{(u, i,y)\} Ω={(u,i,y)}
  • 数据集中的兴趣分数是系统记录的,比如:
    • 曝光但是没有点击,记为0分
    • 点击、点赞、收藏、转发,各记1分
    • 分数最低是0,最高是4

训练

有一个用户-物品交互矩阵,其中行代表用户,列代表物品,矩阵中的元素代表用户对物品的评分。由于用户通常只对少数物品进行评分,这个矩阵往往是稀疏的。因此需要补全这个矩阵

  • 把用户ID、物品ID映射成向量。
    • u u u 号用户 --> 向量 a u a_u au
    • i i i 号物品 --> 向量 b i b_i bi
  • 训练时要求解优化问题,得到参数A和B
    m i n A , B ∑ ( u , i , y ) ∈ Ω ( y − < a u , b i > ) 2 min_{A,B} ∑_{(u, i, y)\in \Omega}( y-<a_u,b_i>)^2 minA,B(u,i,y)Ω(y<au,bi>)2
    其中,A和B是embedding参数矩阵,不是用户-物品交互矩阵
  • 解得A,B之后,根据A和B计算用户-物品交互矩阵中未曝光物品(灰色位置)的兴趣分数补全矩阵
  • 向用户推荐补全的矩阵中分数较高的物品

在这里插入图片描述

缺点

在实践中效果不好…

缺点1:仅用 ID embedding,没利用物品、用户属性。

  • 物品属性:类目、关键词、地理位置、作者信息。
  • 用户属性:性别、年龄、地理定位、感兴趣的类目。
  • 双塔模型可以看做矩阵补充的升级版

缺点2:负样本的选取方式不对。

  • 样本:用户-物品的二元组,记作(u,i)。
  • 正样本:曝光之后,有点击、交互。(正确的做法)
  • 负样本:曝光之后,没有点击、交互。(错误的做法,这是一种想当然的做法,其实没有效果)

缺点3:做训练的方法不好。

  • 內积〈au,bi〉不如余弦相似度。
  • 用平方损失(回归),不如用交叉熵损失(分类)

模型存储

  1. 训练得到矩阵A和B
  • A的每一列对应一个用户。
  • B的每一列对应一个物品。
  1. 把矩阵A的列存储到 key-value 表。
  • key是用户ID,value是A的一列。
  • 给定用户ID,返回一个向量(用户的embedding)
  1. 矩阵B的存储和索引比较复杂

线上服务

把用户 ID作为 key,查询 key-value 表,得到该用户的向量,记作a°

最近邻查找:查找用户最有可能感兴趣的k个物品,作为召回结果。

  • i i i 号物品的 embedding 向量记作 b i b_i bi
  • 內积 < a , b i > <a,b_i> <a,bi>是用户对第 i i i 号物品兴趣的预估。
  • 返回內积最大的k个物品。

缺点:如果枚举所有物品,时间复杂度正比于物品数量。

加速最近邻查找

支持最近邻查找的系统:Milvus、Faiss、HnswLib等等。

衡量最近邻的标准:

  • 欧式距离最小(L2距离)
  • 向量内积最大(内积相似度)
  • 向量夹角余弦最大(cosine相似度,目前常用)

如何用cosine相似度计算最近邻

  1. 在进行线上服务之前对数据进行预处理,划分成很多区域
  • 如何划分取决于用什么标准衡量最近邻
    • 欧式距离最小:多边形
    • cosine相似度:扇形
      在这里插入图片描述
  1. 划分之后每个区域用一个向量表示
  • 这些向量长度都是1(单位向量)
  • 根据向量和点建立索引,把每个区域的向量作为key,区域中所有点的列表作为value,这样给定一个向量就可以取回那个区域所有的点
    在这里插入图片描述
  1. 线上做召回时,把一个用户的向量a和所有索引向量对比,选出最相似的
  2. 通过索引找到物品列表,计算区域内每个物品与用户向量的相似度,选出最相似的k个点

这k个点就是最近邻查找的结果

在这里插入图片描述

相关文章:

[搜广推]王树森推荐系统笔记——矩阵补充最近邻查找

视频合集链接 矩阵补充&#xff08;工业界不常用&#xff09; 模型结构 embedding可以把 用户ID 或者 物品ID 映射成向量输入用户ID 和 物品ID&#xff0c;输出向量的内积&#xff08;一个实数&#xff09;&#xff0c;内积越大说明用户对这个物品越感兴趣模型中的两个embed…...

Unity3D * 粒子特效 * Particle System

(基于阿发教程做的重点笔记) 粒子 用于模拟一些流动的&#xff0c;没有形状的物质&#xff0c;例如 液体&#xff0c;烟雾&#xff0c;火焰&#xff0c;爆炸&#xff0c;魔法等效果 去除粒子外框 particle system 粒子发生器&#xff0c;有1个主模块和22个子模块&#xff0…...

【基础篇】1. JasperSoft Studio编辑器与报表属性介绍

编辑器介绍 Jaspersoft Studio有一个多选项卡编辑器&#xff0c;其中包括三个标签&#xff1a;设计&#xff0c;源代码和预览。 Design&#xff1a;报表设计页面&#xff0c;可以图形化拖拉组件设计报表&#xff0c;打开报表文件的主页面Source&#xff1a;源代码页码&#xff…...

数据结构:算法篇:快速排序;直接插入排序

目录 快速排序 直接插入排序 改良版冒泡排序 快速排序 理解&#xff1a; ①从待排序元素中选定一个基准元素&#xff1b; ②以基准元素将数据分为两部分&#xff1a;&#xff08;可以将&#xff1a;大于基准元素放左&#xff0c;小于基准元素放右&#xff09; ③对左半部分…...

WebAPI编程(第一天,第二天)

WebAPI编程&#xff08;第一天&#xff0c;第二天&#xff09; day01 - Web APIs 1.1. Web API介绍 1.1.1 API的概念1.1.2 Web API的概念1.1.3 API 和 Web API 总结 1.2. DOM 介绍 1.2.1 什么是DOM1.2.2. DOM树 1.3. 获取元素 1.3.1. 根据ID获取1.3.2. 根据标签名获取元素1.3.…...

查看MySQL存储引擎方法,表操作

修改数据库表存储引擎 show create table dept; show table status from itpux where name s2\G; select * from information_schema.TABLES where table_schemaitpux and table_names3; 查询整个mysql里面存储引擎是innodb/myisam的表 建表时候要写好存储引擎 -- 创建表 -- 表…...

【Python教程】Python3基础篇之Number(数字)

博主介绍:✌全网粉丝21W+,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物联网、机器学习等设计与开发。 感兴趣的可…...

基于openEuler22.09部署OpenStack Yoga云平台(一)

OpenStack Yoga部署 安装OpenStack 一、基础准备 基于OpenStack经典的三节点环境进行部署&#xff0c;三个节点分别是控制节点&#xff08;controller&#xff09;、计算节点&#xff08;compute&#xff09;、存储节点&#xff08;storage&#xff09;&#xff0c;其中存储…...

I.MX6U 启动方式详解

一、启动方式选择 BOOT 的处理过程是发生在 I.MX6U 芯片上电以后,芯片会根据 BOOT_MODE[1:0]的设置 来选择 BOOT 方式。 BOOT_MODE[1:0]的值是可以改变的,有两种方式,一种是改写 eFUSE(熔 丝),一种是修改相应的 GPIO 高低电平。第一种修改 eFUSE 的方式只能修改一次,后面就…...

施耐德变频器ATV320系列技术优势:创新与安全并重

在工业自动化领域&#xff0c;追求高效、安全与智能已成为不可阻挡的趋势。施耐德变频器ATV320系列凭借其强大的设计标准和全球认证&#xff0c;成为能够帮助企业降低安装成本&#xff0c;提高设备性能的创新解决方案。 【全球认证&#xff0c;品质保障】ATV320 系列秉持施耐德…...

系统思考—全局思维

昨天接到一个企业需求&#xff0c;某互联网公司VP希望N-1的核心团队一起学习系统思考&#xff0c;特别是在新业务快速发展的阶段。公司增长势头不错&#xff0c;但如何解决跨部门的协作问题&#xff0c;成为了瓶颈。全局思维就是关键。产品、技术、市场、运营、客服……如何打破…...

Windows如何切换用户访问局域网共享文件夹,如何切换网上邻居的账户

Windows如何切换用户访问局域网共享文件夹,如何切换网上邻居的账户 查看共享连接 使用net use命令可以查看当前已经建立的共享连接。net use删除共享连接 使用net use * /del 或net use * /delete命令可以删除所有当前的共享连接。net use * /delnet use * /delete如果只想删除…...

如何在谷歌浏览器中启用语音搜索

想象一下&#xff0c;你正在拥挤的地铁上&#xff0c;双手都拿着沉重的购物袋&#xff0c;突然你想搜索附近的咖啡馆。此时如果你能通过语音而不是打字来进行搜索&#xff0c;那将多么的便利&#xff01;在谷歌浏览器中&#xff0c;启用语音搜索功能就是这么简单而高效&#xf…...

HarmonyOS NEXT 技术实践-基于基础视觉服务实现骨骼点识别

本示例展示了如何在HarmonyOS Next中实现基于基础视觉服务的骨骼点识别功能。骨骼点识别是计算机视觉中的一项重要技术&#xff0c;广泛应用于运动分析、健身监控和增强现实等领域。通过使用HarmonyOS Next提供的视觉API&#xff0c;开发者能够轻松地对人物图像进行骨骼点检测&…...

Debian系统宝塔面板安装LiteSpeed Memcached(LSMCD)

参考链接 1. 官网指引&#xff1a; https://www.litespeedtech.com/support/wiki/doku.php/litespeed_wiki:lsmcd:installation 2. 安装OpenLiteSpeed官方LSMCD对象缓存替换Memcached详细图文教程 - 搬主题 实操记录&#xff1a; 首先LSMCD 默认的端口是11211&#xff0c;…...

tcp 的三次握手与四次挥手

问1: 请你说一下tcp的三次握手一次握手两次握手三次握手问: 为什么不四(更多)次握手? 问 2: 请说一下 tcp 的 4 次挥手一次挥手两次挥手问题:能不能等到数据传输完成再返回 ack? 三次挥手四次挥手问: 为什么要等两个最大报文存在时间? bg: tcp 是可靠的连接,如何保证 建立连…...

QT--信号与槽机制

什么是信号与槽&#xff1f; 在 Qt 中&#xff0c;信号与槽是一种用于对象间通信的机制。它使得一个对象可以通知其他对象某个事件的发生&#xff0c;而不需要直接知道这些对象的具体实现。这种机制非常适合事件驱动的编程模型&#xff0c;如用户界面交互。 1. 信号&#xff…...

vue3项目history路由模式部署上线405、刷新404问题(包括部分页面刷新404问题)

一、找不到js模块 解决方法&#xff1a;配置Nginx配置文件&#xff1a; // root /your/program/path/dist root /www/wwwroot/my_manage_backend_v1/dist;二、刷新页面导致404问题(Not found) 经过一系列配置后发现进入页面一切正常&#xff0c;包括路由前进和回退&#xff0…...

电阻容差是啥意思

定义 电阻器在生产过程中&#xff0c;由于工艺等因素的限制&#xff0c;其实际阻值不可能与标称阻值完全一致&#xff0c;总会存在一定的误差。例如&#xff0c;一个标称阻值为100Ω、容差为5%的电阻&#xff0c;其实际阻值可能在95Ω至105Ω之间。 产生原因 材料特性差异&a…...

Rust: offset祼指针操作

offset是偏移元素个数&#xff0c;不是字节数&#xff01; fn main(){let student_a Student{id:20240001,name:"张三娃".into(),class_id:3,age:14,grade:1};let student_b Student{id:20240002,name:"李四牛".into(),class_id:3,age:15,grade:1};let …...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露&#xff0c;数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据&#xff0c;严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能&#xff0c;但SEMR…...

Linux-进程间的通信

1、IPC&#xff1a; Inter Process Communication&#xff08;进程间通信&#xff09;&#xff1a; 由于每个进程在操作系统中有独立的地址空间&#xff0c;它们不能像线程那样直接访问彼此的内存&#xff0c;所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...