当前位置: 首页 > news >正文

[搜广推]王树森推荐系统笔记——矩阵补充最近邻查找

视频合集链接

矩阵补充(工业界不常用)

模型结构

  • embedding可以把 用户ID 或者 物品ID 映射成向量
  • 输入用户ID 和 物品ID,输出向量的内积(一个实数),内积越大说明用户对这个物品越感兴趣
  • 模型中的两个embedding层不共享参数
    在这里插入图片描述

基本想法

  • 用户 embedding 参数矩阵记作 A A A。第 u u u 号用户对应矩阵第 u u u 列,记作向量 a u a_u au
  • 物品 embedding 参数矩阵记作 B B B。第 i i i 号物品对应矩阵第 i i i 列,记作向量 b i b_i bi
  • 內积 < a u , b i > <a_u,b_i> <au,bi>是第 u u u 号用户对第 i i i 号物品兴趣的预估值。
  • 训练模型的目的是学习矩阵 A A A B B B ,使得预估值拟合真实观测的兴趣分数。

在这里插入图片描述

数据集

  • (用户ID,物品ID,兴趣分数)的集合,记作 Ω = { ( u , i , y ) } Ω =\{(u, i,y)\} Ω={(u,i,y)}
  • 数据集中的兴趣分数是系统记录的,比如:
    • 曝光但是没有点击,记为0分
    • 点击、点赞、收藏、转发,各记1分
    • 分数最低是0,最高是4

训练

有一个用户-物品交互矩阵,其中行代表用户,列代表物品,矩阵中的元素代表用户对物品的评分。由于用户通常只对少数物品进行评分,这个矩阵往往是稀疏的。因此需要补全这个矩阵

  • 把用户ID、物品ID映射成向量。
    • u u u 号用户 --> 向量 a u a_u au
    • i i i 号物品 --> 向量 b i b_i bi
  • 训练时要求解优化问题,得到参数A和B
    m i n A , B ∑ ( u , i , y ) ∈ Ω ( y − < a u , b i > ) 2 min_{A,B} ∑_{(u, i, y)\in \Omega}( y-<a_u,b_i>)^2 minA,B(u,i,y)Ω(y<au,bi>)2
    其中,A和B是embedding参数矩阵,不是用户-物品交互矩阵
  • 解得A,B之后,根据A和B计算用户-物品交互矩阵中未曝光物品(灰色位置)的兴趣分数补全矩阵
  • 向用户推荐补全的矩阵中分数较高的物品

在这里插入图片描述

缺点

在实践中效果不好…

缺点1:仅用 ID embedding,没利用物品、用户属性。

  • 物品属性:类目、关键词、地理位置、作者信息。
  • 用户属性:性别、年龄、地理定位、感兴趣的类目。
  • 双塔模型可以看做矩阵补充的升级版

缺点2:负样本的选取方式不对。

  • 样本:用户-物品的二元组,记作(u,i)。
  • 正样本:曝光之后,有点击、交互。(正确的做法)
  • 负样本:曝光之后,没有点击、交互。(错误的做法,这是一种想当然的做法,其实没有效果)

缺点3:做训练的方法不好。

  • 內积〈au,bi〉不如余弦相似度。
  • 用平方损失(回归),不如用交叉熵损失(分类)

模型存储

  1. 训练得到矩阵A和B
  • A的每一列对应一个用户。
  • B的每一列对应一个物品。
  1. 把矩阵A的列存储到 key-value 表。
  • key是用户ID,value是A的一列。
  • 给定用户ID,返回一个向量(用户的embedding)
  1. 矩阵B的存储和索引比较复杂

线上服务

把用户 ID作为 key,查询 key-value 表,得到该用户的向量,记作a°

最近邻查找:查找用户最有可能感兴趣的k个物品,作为召回结果。

  • i i i 号物品的 embedding 向量记作 b i b_i bi
  • 內积 < a , b i > <a,b_i> <a,bi>是用户对第 i i i 号物品兴趣的预估。
  • 返回內积最大的k个物品。

缺点:如果枚举所有物品,时间复杂度正比于物品数量。

加速最近邻查找

支持最近邻查找的系统:Milvus、Faiss、HnswLib等等。

衡量最近邻的标准:

  • 欧式距离最小(L2距离)
  • 向量内积最大(内积相似度)
  • 向量夹角余弦最大(cosine相似度,目前常用)

如何用cosine相似度计算最近邻

  1. 在进行线上服务之前对数据进行预处理,划分成很多区域
  • 如何划分取决于用什么标准衡量最近邻
    • 欧式距离最小:多边形
    • cosine相似度:扇形
      在这里插入图片描述
  1. 划分之后每个区域用一个向量表示
  • 这些向量长度都是1(单位向量)
  • 根据向量和点建立索引,把每个区域的向量作为key,区域中所有点的列表作为value,这样给定一个向量就可以取回那个区域所有的点
    在这里插入图片描述
  1. 线上做召回时,把一个用户的向量a和所有索引向量对比,选出最相似的
  2. 通过索引找到物品列表,计算区域内每个物品与用户向量的相似度,选出最相似的k个点

这k个点就是最近邻查找的结果

在这里插入图片描述

相关文章:

[搜广推]王树森推荐系统笔记——矩阵补充最近邻查找

视频合集链接 矩阵补充&#xff08;工业界不常用&#xff09; 模型结构 embedding可以把 用户ID 或者 物品ID 映射成向量输入用户ID 和 物品ID&#xff0c;输出向量的内积&#xff08;一个实数&#xff09;&#xff0c;内积越大说明用户对这个物品越感兴趣模型中的两个embed…...

Unity3D * 粒子特效 * Particle System

(基于阿发教程做的重点笔记) 粒子 用于模拟一些流动的&#xff0c;没有形状的物质&#xff0c;例如 液体&#xff0c;烟雾&#xff0c;火焰&#xff0c;爆炸&#xff0c;魔法等效果 去除粒子外框 particle system 粒子发生器&#xff0c;有1个主模块和22个子模块&#xff0…...

【基础篇】1. JasperSoft Studio编辑器与报表属性介绍

编辑器介绍 Jaspersoft Studio有一个多选项卡编辑器&#xff0c;其中包括三个标签&#xff1a;设计&#xff0c;源代码和预览。 Design&#xff1a;报表设计页面&#xff0c;可以图形化拖拉组件设计报表&#xff0c;打开报表文件的主页面Source&#xff1a;源代码页码&#xff…...

数据结构:算法篇:快速排序;直接插入排序

目录 快速排序 直接插入排序 改良版冒泡排序 快速排序 理解&#xff1a; ①从待排序元素中选定一个基准元素&#xff1b; ②以基准元素将数据分为两部分&#xff1a;&#xff08;可以将&#xff1a;大于基准元素放左&#xff0c;小于基准元素放右&#xff09; ③对左半部分…...

WebAPI编程(第一天,第二天)

WebAPI编程&#xff08;第一天&#xff0c;第二天&#xff09; day01 - Web APIs 1.1. Web API介绍 1.1.1 API的概念1.1.2 Web API的概念1.1.3 API 和 Web API 总结 1.2. DOM 介绍 1.2.1 什么是DOM1.2.2. DOM树 1.3. 获取元素 1.3.1. 根据ID获取1.3.2. 根据标签名获取元素1.3.…...

查看MySQL存储引擎方法,表操作

修改数据库表存储引擎 show create table dept; show table status from itpux where name s2\G; select * from information_schema.TABLES where table_schemaitpux and table_names3; 查询整个mysql里面存储引擎是innodb/myisam的表 建表时候要写好存储引擎 -- 创建表 -- 表…...

【Python教程】Python3基础篇之Number(数字)

博主介绍:✌全网粉丝21W+,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物联网、机器学习等设计与开发。 感兴趣的可…...

基于openEuler22.09部署OpenStack Yoga云平台(一)

OpenStack Yoga部署 安装OpenStack 一、基础准备 基于OpenStack经典的三节点环境进行部署&#xff0c;三个节点分别是控制节点&#xff08;controller&#xff09;、计算节点&#xff08;compute&#xff09;、存储节点&#xff08;storage&#xff09;&#xff0c;其中存储…...

I.MX6U 启动方式详解

一、启动方式选择 BOOT 的处理过程是发生在 I.MX6U 芯片上电以后,芯片会根据 BOOT_MODE[1:0]的设置 来选择 BOOT 方式。 BOOT_MODE[1:0]的值是可以改变的,有两种方式,一种是改写 eFUSE(熔 丝),一种是修改相应的 GPIO 高低电平。第一种修改 eFUSE 的方式只能修改一次,后面就…...

施耐德变频器ATV320系列技术优势:创新与安全并重

在工业自动化领域&#xff0c;追求高效、安全与智能已成为不可阻挡的趋势。施耐德变频器ATV320系列凭借其强大的设计标准和全球认证&#xff0c;成为能够帮助企业降低安装成本&#xff0c;提高设备性能的创新解决方案。 【全球认证&#xff0c;品质保障】ATV320 系列秉持施耐德…...

系统思考—全局思维

昨天接到一个企业需求&#xff0c;某互联网公司VP希望N-1的核心团队一起学习系统思考&#xff0c;特别是在新业务快速发展的阶段。公司增长势头不错&#xff0c;但如何解决跨部门的协作问题&#xff0c;成为了瓶颈。全局思维就是关键。产品、技术、市场、运营、客服……如何打破…...

Windows如何切换用户访问局域网共享文件夹,如何切换网上邻居的账户

Windows如何切换用户访问局域网共享文件夹,如何切换网上邻居的账户 查看共享连接 使用net use命令可以查看当前已经建立的共享连接。net use删除共享连接 使用net use * /del 或net use * /delete命令可以删除所有当前的共享连接。net use * /delnet use * /delete如果只想删除…...

如何在谷歌浏览器中启用语音搜索

想象一下&#xff0c;你正在拥挤的地铁上&#xff0c;双手都拿着沉重的购物袋&#xff0c;突然你想搜索附近的咖啡馆。此时如果你能通过语音而不是打字来进行搜索&#xff0c;那将多么的便利&#xff01;在谷歌浏览器中&#xff0c;启用语音搜索功能就是这么简单而高效&#xf…...

HarmonyOS NEXT 技术实践-基于基础视觉服务实现骨骼点识别

本示例展示了如何在HarmonyOS Next中实现基于基础视觉服务的骨骼点识别功能。骨骼点识别是计算机视觉中的一项重要技术&#xff0c;广泛应用于运动分析、健身监控和增强现实等领域。通过使用HarmonyOS Next提供的视觉API&#xff0c;开发者能够轻松地对人物图像进行骨骼点检测&…...

Debian系统宝塔面板安装LiteSpeed Memcached(LSMCD)

参考链接 1. 官网指引&#xff1a; https://www.litespeedtech.com/support/wiki/doku.php/litespeed_wiki:lsmcd:installation 2. 安装OpenLiteSpeed官方LSMCD对象缓存替换Memcached详细图文教程 - 搬主题 实操记录&#xff1a; 首先LSMCD 默认的端口是11211&#xff0c;…...

tcp 的三次握手与四次挥手

问1: 请你说一下tcp的三次握手一次握手两次握手三次握手问: 为什么不四(更多)次握手? 问 2: 请说一下 tcp 的 4 次挥手一次挥手两次挥手问题:能不能等到数据传输完成再返回 ack? 三次挥手四次挥手问: 为什么要等两个最大报文存在时间? bg: tcp 是可靠的连接,如何保证 建立连…...

QT--信号与槽机制

什么是信号与槽&#xff1f; 在 Qt 中&#xff0c;信号与槽是一种用于对象间通信的机制。它使得一个对象可以通知其他对象某个事件的发生&#xff0c;而不需要直接知道这些对象的具体实现。这种机制非常适合事件驱动的编程模型&#xff0c;如用户界面交互。 1. 信号&#xff…...

vue3项目history路由模式部署上线405、刷新404问题(包括部分页面刷新404问题)

一、找不到js模块 解决方法&#xff1a;配置Nginx配置文件&#xff1a; // root /your/program/path/dist root /www/wwwroot/my_manage_backend_v1/dist;二、刷新页面导致404问题(Not found) 经过一系列配置后发现进入页面一切正常&#xff0c;包括路由前进和回退&#xff0…...

电阻容差是啥意思

定义 电阻器在生产过程中&#xff0c;由于工艺等因素的限制&#xff0c;其实际阻值不可能与标称阻值完全一致&#xff0c;总会存在一定的误差。例如&#xff0c;一个标称阻值为100Ω、容差为5%的电阻&#xff0c;其实际阻值可能在95Ω至105Ω之间。 产生原因 材料特性差异&a…...

Rust: offset祼指针操作

offset是偏移元素个数&#xff0c;不是字节数&#xff01; fn main(){let student_a Student{id:20240001,name:"张三娃".into(),class_id:3,age:14,grade:1};let student_b Student{id:20240002,name:"李四牛".into(),class_id:3,age:15,grade:1};let …...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...

小智AI+MCP

什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析&#xff1a;AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github&#xff1a;https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...

RabbitMQ 各类交换机

为什么要用交换机&#xff1f; 交换机用来路由消息。如果直发队列&#xff0c;这个消息就被处理消失了&#xff0c;那别的队列也需要这个消息怎么办&#xff1f;那就要用到交换机 交换机类型 1&#xff0c;fanout&#xff1a;广播 特点 广播所有消息​​&#xff1a;将消息…...

__VUE_PROD_HYDRATION_MISMATCH_DETAILS__ is not explicitly defined.

这个警告表明您在使用Vue的esm-bundler构建版本时&#xff0c;未明确定义编译时特性标志。以下是详细解释和解决方案&#xff1a; ‌问题原因‌&#xff1a; 该标志是Vue 3.4引入的编译时特性标志&#xff0c;用于控制生产环境下SSR水合不匹配错误的详细报告1使用esm-bundler…...

零基础在实践中学习网络安全-皮卡丘靶场(第十一期-目录遍历模块)

经过前面几期的内容我们学习了很多网络安全的知识&#xff0c;而这期内容就涉及到了前面的第六期-RCE模块&#xff0c;第七期-File inclusion模块&#xff0c;第八期-Unsafe Filedownload模块。 什么是"遍历"呢&#xff1a;对学过一些开发语言的朋友来说应该知道&…...