当前位置: 首页 > news >正文

Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架

以下是一个使用Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架。这个框架涵盖了数据收集(爬虫)、数据清洗和预处理、模型构建(决策树和神经网络)以及模型评估的主要步骤。

1. 数据收集(爬虫)

首先,我们需要从网站获取X光影像数据。假设我们要爬取的网站允许爬取,并且遵循相关法律法规。这里我们使用requestsBeautifulSoup库来进行网页数据的抓取。

import requests
from bs4 import BeautifulSoup
import osdef download_xray_images(url, save_dir):if not os.path.exists(save_dir):os.makedirs(save_dir)response = requests.get(url)soup = BeautifulSoup(response.content, 'html.parser')image_tags = soup.find_all('img')for index, img in enumerate(image_tags):img_url = img.get('src')if img_url and (img_url.endswith('.jpg') or img_url.endswith('.jpeg') or img_url.endswith('.png')):img_response = requests.get(img_url)with open(os.path.join(save_dir, f'image_{index}.jpg'), 'wb') as f:f.write(img_response.content)

2. 数据清洗和预处理

接下来,我们需要对获取的X光影像数据进行清洗和预处理。这包括图像的读取、调整大小、归一化等操作。我们使用Pillownumpy库来处理图像数据。

from PIL import Image
import numpy as npdef preprocess_images(image_dir, target_size=(224, 224)):images = []labels = []for root, dirs, files in os.walk(image_dir):for file in files:if file.endswith('.jpg') or file.endswith('.jpeg') or file.endswith('.png'):image_path = os.path.join(root, file)img = Image.open(image_path)img = img.resize(target_size)img = np.array(img)img = img / 255.0images.append(img)# 这里假设目录名就是标签label = os.path.basename(root)labels.append(label)return np.array(images), np.array(labels)

3. 特征提取

对于图像数据,我们可以使用预训练的卷积神经网络(如VGG16)来提取特征。

from keras.applications.vgg16 import VGG16, preprocess_input
from keras.models import Modeldef extract_features(images):base_model = VGG16(weights='imagenet', include_top=False)model = Model(inputs=base_model.input, outputs=base_model.output)images = preprocess_input(images)features = model.predict(images)features = features.flatten().reshape(features.shape[0], -1)return features

4. 模型构建

我们将使用决策树和神经网络模型进行疾病分类。

from sklearn.tree import DecisionTreeClassifier
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_splitdef build_decision_tree_model(X, y):X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)model = DecisionTreeClassifier()model.fit(X_train, y_train)return model, X_test, y_testdef build_neural_network_model(X, y):X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)model = Sequential()model.add(Dense(128, activation='relu', input_shape=(X.shape[1],)))model.add(Dense(len(np.unique(y)), activation='softmax'))model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])model.fit(X_train, y_train, epochs=10, batch_size=32, verbose=1)return model, X_test, y_test

5. 模型评估

最后,我们需要评估模型的准确率和召回率。

from sklearn.metrics import accuracy_score, recall_scoredef evaluate_model(model, X_test, y_test):y_pred = model.predict(X_test)accuracy = accuracy_score(y_test, y_pred)recall = recall_score(y_test, y_pred, average='weighted')return accuracy, recall

主程序

if __name__ == "__main__":# 数据收集url = "your_target_url"save_dir = "xray_images"download_xray_images(url, save_dir)# 数据清洗和预处理images, labels = preprocess_images(save_dir)# 特征提取features = extract_features(images)# 决策树模型dt_model, dt_X_test, dt_y_test = build_decision_tree_model(features, labels)dt_accuracy, dt_recall = evaluate_model(dt_model, dt_X_test, dt_y_test)print(f"Decision Tree - Accuracy: {dt_accuracy}, Recall: {dt_recall}")# 神经网络模型nn_model, nn_X_test, nn_y_test = build_neural_network_model(features, labels)nn_accuracy, nn_recall = evaluate_model(nn_model, nn_X_test, nn_y_test)print(f"Neural Network - Accuracy: {nn_accuracy}, Recall: {nn_recall}")

注意事项

  1. 数据合法性:在进行数据爬取时,确保你有合法的权限从目标网站获取数据。
  2. 数据标注:上述代码中简单假设目录名就是标签,实际应用中需要更准确的标注方法。
  3. 模型优化:实际应用中,可能需要对模型进行更多的调优,如超参数调整、模型融合等。
  4. 数据隐私:处理医疗数据时,要严格遵守数据隐私和安全法规。

以上代码只是一个示例框架,实际的医疗预测模型系统需要更深入的研究和优化,以确保其可靠性和准确性。

相关文章:

Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架

以下是一个使用Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架。这个框架涵盖了数据收集(爬虫)、数据清洗和预处理、模型构建(决策树和神经网络)以及模型评估的主要步骤。 1. 数据收集(爬虫&#xff09…...

AWS Certified AI Practitioner 自学考试心得

学习目标: 考取 AWS Certified AI Practitioner 那什么是 AWS Certified AI Practitioner 认证 是基础级的认证 比较简单 — 学习内容: 1. AWS网站自学网站 极客时间免费课程:http://gk.link/a/12sJL 配合极客时间课程的章节测试检验自…...

JQ中的each()方法与$.each()函数的使用区别

介绍 jquery里的 each() 是一个强大的遍历工具,用于迭代集合中的元素,并为每个元素执行指定的函数‌。它既可以用于遍历 jQuery对象集合,也可以用于遍历普通的数组或对象。 each()对象遍历 语法: $(selector).each(function(in…...

滚珠丝杆与直线导轨的区别

滚珠丝杆和直线导轨是两种常见的精密机械传动装置,它们的作用是实现直线运动,在工业自动化和精密机械领域中扮演着重要的角色。尽管它们都用于实现直线运动,但它们在结构以及性能特点上还是存在一些区别: 一、工作原理 1、滚珠丝…...

【Ovis】Ovis1.6的本地部署及推理

Ovis简介 Ovis是阿里国际AI团队开源的多模态大模型,看新闻介绍效果不错,在多个场景的测试下都能达到SOTA,其中的Ovis1.6-Gemma2-9B在30B参数以下的模型中取得了综合排名第一,赶超MiniCPM-V-2.6等行业优秀大模型。所以我也部署一个…...

C语言结构体位定义(位段)的实际作用深入分析

1、结构体位段格式 struct struct_name {type [member_name] : width; };一般定义结构体,成员都是int、char等类型,占用的空间大小是固定的在成员名称后用冒号来指定位宽,可以指定每个成员所占用空间,并且也不用受结构体成员起始…...

儿童影楼管理系统:基于SSM的创新设计与功能实现

3.1系统的需求分析 需求分析阶段是设计系统功能模块的总方向,可以这样来说,系统的整个的开发流程以及设计进度,基本上都是以需求分析为基本依据的[10]。需求分析阶段可以确定系统的基本功能设计,以及在最后的系统验收阶段&#xf…...

青蛇人工智能学家

青蛇人工智能学家 青蛇,是蓝星上,最出名的人工智能学家。 在蓝星上,大家都知道,青蛇人工智能学家,最大的爱好,是美食。 青蛇人工智能学家,对自己的食物,非常在意,对自己的…...

uniapp+vue 前端防多次点击表单,防误触多次请求方法。

最近项目需求写了个uniappvue前端H5,有个页面提交表单的时候发现会有用户乱点导致数据库多条重复脏数据。故需要优化,多次点击表单只请求一次。 思路: 直接调用uni.showToast,点完按钮跳一个提交成功的提示。然后把防触摸穿透mask设置成true就行&#…...

【ES6复习笔记】rest参数(7)

什么是 rest 参数? rest 参数是 ES6 引入的一个特性,它允许我们将一个不定数量的参数表示为一个数组。使用 rest 参数可以更方便地处理函数的参数,尤其是在参数数量不确定的情况下。 如何使用 rest 参数? 在函数定义中&#xf…...

Hive SQL 窗口函数 `ROW_NUMBER() ` 案例分析

一文彻底搞懂 ROW_NUMBER() 和 PARTITION BY 1. 引言 在处理大规模数据集时,Hive SQL 提供了强大的窗口函数(Window Function),如 ROW_NUMBER(),用于为结果集中的每一行分配唯一的行号。当与 PARTITION BY 和 ORDER …...

前端mock数据 —— 使用Apifox mock页面所需数据

前端mock数据 —— 使用Apifox 一、使用教程二、本地请求Apifox所mock的接口 一、使用教程 在首页进行新建项目: 新建项目名称: 新建接口: 创建json: 请求方法: GET。URL: api/basis。响应类型&#xf…...

车载U盘制作教程:轻松享受个性化音乐

车载U盘播放音乐相较于蓝牙播放具有一些明显的优势,这些优势主要体现在音质、稳定性、音乐管理以及兼容性等方面。以下是车载U盘播放音乐的一些优势: 音质更佳:车载U盘播放音乐时,音乐文件是直接被解码并播放的,这意味…...

springboot 3 websocket react 系统提示,选手实时数据更新监控

构建一个基于 Spring Boot 3 和 WebSocket 的实时数据监控系统,并在前端使用 React,可以实现选手实时数据的更新和展示功能。以下是该系统的核心设计和实现思路: 1. 系统架构 后端 (Spring Boot 3): 提供 WebSocket 服务端,处理…...

现代图形API综合比较:Vulkan DirectX Metal WebGPU

Vulkan、DirectX、Metal 和 WebGPU 等低级图形 API 正在融合为类似于当前 GPU 构建方式的模型。 图形处理单元 (GPU) 是异步计算单元,可以处理大量数据,例如复杂的网格几何形状、图像纹理、输出帧缓冲区、变换矩阵或你想要计算的任何数据。 NSDT工具推荐…...

【Hot100刷题计划】Day04 栈专题 1~3天回顾(持续更新)

LeetCode Hot 100 是最常被考察的题目集合,涵盖了面试中常见的算法和数据结构问题。刷 Hot100可以让你在有限的时间内集中精力解决最常考的问题。鼓励大家不仅要写出代码,最好理解问题的本质、优化解法和复杂度分析。遇到问题要多交流多求问多分享&#…...

用VBA将word文档处理成支持弹出式注释的epub文档可用的html内容

有一种epub文件,其中的注释以弹窗形式显示,如下图: 点击注释引用后,对应的注释内容会弹出在页面中显示,再次点击弹窗外的任意位置该弹窗即关闭,关闭后点击任意注释引用,对应的注释内容会弹窗显示…...

舵机原理介绍 简洁讲解面向实战 非阻塞式驱动代码, arduino

目录 1.舵机简介 2.舵机转动角度的PWM条件(以180度的SG90舵机为例) 2.1 控制关系 2.2arduino产生PWM 3.0 附代码 循环0度到180度开关舵机(非阻塞版本) 4.0 Servo.h 舵机代码 1.舵机简介 舵机也叫伺服电机,是控制输入PWM信号来精确控制转动角度.所以想要驱动舵机就是让ard…...

Oracle Database 23ai 中的DBMS_HCHECK

在 Oracle 23ai 中,DBMS_HCHECK 包允许我们检查数据库中已知的数据字典问题。 几年前,Oracle 发布了 hcheck.sql 脚本(文档 ID 136697.1)来检查数据库中已知的数据字典问题。 DBMS_HCHECK 包意味着我们不再需要下载 hcheck.sql…...

如何利用AWS监听存储桶并上传到tg bot

业务描述: 需要监听aws的存储中的最新消息,发送新的消息推送到指定tg的频道。 主要流程: 1.上传消息到s3存储桶(不做具体描述) 2.通过aws的lambda监听s3存储桶的最新消息(txt文件) 3.将txt文件…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...