当前位置: 首页 > news >正文

Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架

以下是一个使用Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架。这个框架涵盖了数据收集(爬虫)、数据清洗和预处理、模型构建(决策树和神经网络)以及模型评估的主要步骤。

1. 数据收集(爬虫)

首先,我们需要从网站获取X光影像数据。假设我们要爬取的网站允许爬取,并且遵循相关法律法规。这里我们使用requestsBeautifulSoup库来进行网页数据的抓取。

import requests
from bs4 import BeautifulSoup
import osdef download_xray_images(url, save_dir):if not os.path.exists(save_dir):os.makedirs(save_dir)response = requests.get(url)soup = BeautifulSoup(response.content, 'html.parser')image_tags = soup.find_all('img')for index, img in enumerate(image_tags):img_url = img.get('src')if img_url and (img_url.endswith('.jpg') or img_url.endswith('.jpeg') or img_url.endswith('.png')):img_response = requests.get(img_url)with open(os.path.join(save_dir, f'image_{index}.jpg'), 'wb') as f:f.write(img_response.content)

2. 数据清洗和预处理

接下来,我们需要对获取的X光影像数据进行清洗和预处理。这包括图像的读取、调整大小、归一化等操作。我们使用Pillownumpy库来处理图像数据。

from PIL import Image
import numpy as npdef preprocess_images(image_dir, target_size=(224, 224)):images = []labels = []for root, dirs, files in os.walk(image_dir):for file in files:if file.endswith('.jpg') or file.endswith('.jpeg') or file.endswith('.png'):image_path = os.path.join(root, file)img = Image.open(image_path)img = img.resize(target_size)img = np.array(img)img = img / 255.0images.append(img)# 这里假设目录名就是标签label = os.path.basename(root)labels.append(label)return np.array(images), np.array(labels)

3. 特征提取

对于图像数据,我们可以使用预训练的卷积神经网络(如VGG16)来提取特征。

from keras.applications.vgg16 import VGG16, preprocess_input
from keras.models import Modeldef extract_features(images):base_model = VGG16(weights='imagenet', include_top=False)model = Model(inputs=base_model.input, outputs=base_model.output)images = preprocess_input(images)features = model.predict(images)features = features.flatten().reshape(features.shape[0], -1)return features

4. 模型构建

我们将使用决策树和神经网络模型进行疾病分类。

from sklearn.tree import DecisionTreeClassifier
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_splitdef build_decision_tree_model(X, y):X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)model = DecisionTreeClassifier()model.fit(X_train, y_train)return model, X_test, y_testdef build_neural_network_model(X, y):X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)model = Sequential()model.add(Dense(128, activation='relu', input_shape=(X.shape[1],)))model.add(Dense(len(np.unique(y)), activation='softmax'))model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])model.fit(X_train, y_train, epochs=10, batch_size=32, verbose=1)return model, X_test, y_test

5. 模型评估

最后,我们需要评估模型的准确率和召回率。

from sklearn.metrics import accuracy_score, recall_scoredef evaluate_model(model, X_test, y_test):y_pred = model.predict(X_test)accuracy = accuracy_score(y_test, y_pred)recall = recall_score(y_test, y_pred, average='weighted')return accuracy, recall

主程序

if __name__ == "__main__":# 数据收集url = "your_target_url"save_dir = "xray_images"download_xray_images(url, save_dir)# 数据清洗和预处理images, labels = preprocess_images(save_dir)# 特征提取features = extract_features(images)# 决策树模型dt_model, dt_X_test, dt_y_test = build_decision_tree_model(features, labels)dt_accuracy, dt_recall = evaluate_model(dt_model, dt_X_test, dt_y_test)print(f"Decision Tree - Accuracy: {dt_accuracy}, Recall: {dt_recall}")# 神经网络模型nn_model, nn_X_test, nn_y_test = build_neural_network_model(features, labels)nn_accuracy, nn_recall = evaluate_model(nn_model, nn_X_test, nn_y_test)print(f"Neural Network - Accuracy: {nn_accuracy}, Recall: {nn_recall}")

注意事项

  1. 数据合法性:在进行数据爬取时,确保你有合法的权限从目标网站获取数据。
  2. 数据标注:上述代码中简单假设目录名就是标签,实际应用中需要更准确的标注方法。
  3. 模型优化:实际应用中,可能需要对模型进行更多的调优,如超参数调整、模型融合等。
  4. 数据隐私:处理医疗数据时,要严格遵守数据隐私和安全法规。

以上代码只是一个示例框架,实际的医疗预测模型系统需要更深入的研究和优化,以确保其可靠性和准确性。

相关文章:

Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架

以下是一个使用Python实现机器学习驱动的智能医疗预测模型系统的示例代码框架。这个框架涵盖了数据收集(爬虫)、数据清洗和预处理、模型构建(决策树和神经网络)以及模型评估的主要步骤。 1. 数据收集(爬虫&#xff09…...

AWS Certified AI Practitioner 自学考试心得

学习目标: 考取 AWS Certified AI Practitioner 那什么是 AWS Certified AI Practitioner 认证 是基础级的认证 比较简单 — 学习内容: 1. AWS网站自学网站 极客时间免费课程:http://gk.link/a/12sJL 配合极客时间课程的章节测试检验自…...

JQ中的each()方法与$.each()函数的使用区别

介绍 jquery里的 each() 是一个强大的遍历工具,用于迭代集合中的元素,并为每个元素执行指定的函数‌。它既可以用于遍历 jQuery对象集合,也可以用于遍历普通的数组或对象。 each()对象遍历 语法: $(selector).each(function(in…...

滚珠丝杆与直线导轨的区别

滚珠丝杆和直线导轨是两种常见的精密机械传动装置,它们的作用是实现直线运动,在工业自动化和精密机械领域中扮演着重要的角色。尽管它们都用于实现直线运动,但它们在结构以及性能特点上还是存在一些区别: 一、工作原理 1、滚珠丝…...

【Ovis】Ovis1.6的本地部署及推理

Ovis简介 Ovis是阿里国际AI团队开源的多模态大模型,看新闻介绍效果不错,在多个场景的测试下都能达到SOTA,其中的Ovis1.6-Gemma2-9B在30B参数以下的模型中取得了综合排名第一,赶超MiniCPM-V-2.6等行业优秀大模型。所以我也部署一个…...

C语言结构体位定义(位段)的实际作用深入分析

1、结构体位段格式 struct struct_name {type [member_name] : width; };一般定义结构体,成员都是int、char等类型,占用的空间大小是固定的在成员名称后用冒号来指定位宽,可以指定每个成员所占用空间,并且也不用受结构体成员起始…...

儿童影楼管理系统:基于SSM的创新设计与功能实现

3.1系统的需求分析 需求分析阶段是设计系统功能模块的总方向,可以这样来说,系统的整个的开发流程以及设计进度,基本上都是以需求分析为基本依据的[10]。需求分析阶段可以确定系统的基本功能设计,以及在最后的系统验收阶段&#xf…...

青蛇人工智能学家

青蛇人工智能学家 青蛇,是蓝星上,最出名的人工智能学家。 在蓝星上,大家都知道,青蛇人工智能学家,最大的爱好,是美食。 青蛇人工智能学家,对自己的食物,非常在意,对自己的…...

uniapp+vue 前端防多次点击表单,防误触多次请求方法。

最近项目需求写了个uniappvue前端H5,有个页面提交表单的时候发现会有用户乱点导致数据库多条重复脏数据。故需要优化,多次点击表单只请求一次。 思路: 直接调用uni.showToast,点完按钮跳一个提交成功的提示。然后把防触摸穿透mask设置成true就行&#…...

【ES6复习笔记】rest参数(7)

什么是 rest 参数? rest 参数是 ES6 引入的一个特性,它允许我们将一个不定数量的参数表示为一个数组。使用 rest 参数可以更方便地处理函数的参数,尤其是在参数数量不确定的情况下。 如何使用 rest 参数? 在函数定义中&#xf…...

Hive SQL 窗口函数 `ROW_NUMBER() ` 案例分析

一文彻底搞懂 ROW_NUMBER() 和 PARTITION BY 1. 引言 在处理大规模数据集时,Hive SQL 提供了强大的窗口函数(Window Function),如 ROW_NUMBER(),用于为结果集中的每一行分配唯一的行号。当与 PARTITION BY 和 ORDER …...

前端mock数据 —— 使用Apifox mock页面所需数据

前端mock数据 —— 使用Apifox 一、使用教程二、本地请求Apifox所mock的接口 一、使用教程 在首页进行新建项目: 新建项目名称: 新建接口: 创建json: 请求方法: GET。URL: api/basis。响应类型&#xf…...

车载U盘制作教程:轻松享受个性化音乐

车载U盘播放音乐相较于蓝牙播放具有一些明显的优势,这些优势主要体现在音质、稳定性、音乐管理以及兼容性等方面。以下是车载U盘播放音乐的一些优势: 音质更佳:车载U盘播放音乐时,音乐文件是直接被解码并播放的,这意味…...

springboot 3 websocket react 系统提示,选手实时数据更新监控

构建一个基于 Spring Boot 3 和 WebSocket 的实时数据监控系统,并在前端使用 React,可以实现选手实时数据的更新和展示功能。以下是该系统的核心设计和实现思路: 1. 系统架构 后端 (Spring Boot 3): 提供 WebSocket 服务端,处理…...

现代图形API综合比较:Vulkan DirectX Metal WebGPU

Vulkan、DirectX、Metal 和 WebGPU 等低级图形 API 正在融合为类似于当前 GPU 构建方式的模型。 图形处理单元 (GPU) 是异步计算单元,可以处理大量数据,例如复杂的网格几何形状、图像纹理、输出帧缓冲区、变换矩阵或你想要计算的任何数据。 NSDT工具推荐…...

【Hot100刷题计划】Day04 栈专题 1~3天回顾(持续更新)

LeetCode Hot 100 是最常被考察的题目集合,涵盖了面试中常见的算法和数据结构问题。刷 Hot100可以让你在有限的时间内集中精力解决最常考的问题。鼓励大家不仅要写出代码,最好理解问题的本质、优化解法和复杂度分析。遇到问题要多交流多求问多分享&#…...

用VBA将word文档处理成支持弹出式注释的epub文档可用的html内容

有一种epub文件,其中的注释以弹窗形式显示,如下图: 点击注释引用后,对应的注释内容会弹出在页面中显示,再次点击弹窗外的任意位置该弹窗即关闭,关闭后点击任意注释引用,对应的注释内容会弹窗显示…...

舵机原理介绍 简洁讲解面向实战 非阻塞式驱动代码, arduino

目录 1.舵机简介 2.舵机转动角度的PWM条件(以180度的SG90舵机为例) 2.1 控制关系 2.2arduino产生PWM 3.0 附代码 循环0度到180度开关舵机(非阻塞版本) 4.0 Servo.h 舵机代码 1.舵机简介 舵机也叫伺服电机,是控制输入PWM信号来精确控制转动角度.所以想要驱动舵机就是让ard…...

Oracle Database 23ai 中的DBMS_HCHECK

在 Oracle 23ai 中,DBMS_HCHECK 包允许我们检查数据库中已知的数据字典问题。 几年前,Oracle 发布了 hcheck.sql 脚本(文档 ID 136697.1)来检查数据库中已知的数据字典问题。 DBMS_HCHECK 包意味着我们不再需要下载 hcheck.sql…...

如何利用AWS监听存储桶并上传到tg bot

业务描述: 需要监听aws的存储中的最新消息,发送新的消息推送到指定tg的频道。 主要流程: 1.上传消息到s3存储桶(不做具体描述) 2.通过aws的lambda监听s3存储桶的最新消息(txt文件) 3.将txt文件…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层&#xf…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM&#xff09…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...