当前位置: 首页 > news >正文

基于ArcGIS Pro的SWAT模型在流域水循环、水生态模拟中的应用及案例分析;SWAT模型安装、运行到结果读取全流程指导

目前,流域水资源和水生态问题逐渐成为制约社会经济和环境可持续发展的重要因素。SWAT模型是一种基于物理机制的分布式流域水文与生态模拟模型,能够对流域的水循环过程、污染物迁移等过程进行精细模拟和量化分析。SWAT模型目前广泛应用于流域水文过程研究、污染负荷评估以及水资源与生态保护等领域,成为流域研究中不可或缺的重要工具。ArcGIS Pro作为新一代地理信息系统平台,与SWAT模型的深度结合,进一步提升了模型的空间数据处理能力和结果可视化水平。相较于传统的ArcGIS软件,ArcGIS Pro在数据处理效率、跨平台协作、云计算支持和动态可视化展示等方面表现更加突出,为基于SWAT模型的流域水文和水生态研究提供了更先进的技术支撑。人工智能(AI)的快速发展为基于SWAT模型和ArcGIS Pro的流域研究提供了重要助力,显著提高了工作效率并帮助解决复杂问题。AI与SWAT模型及ArcGIS Pro的结合,不仅大幅提升了流域研究的效率,还为复杂问题提供了创新解决方案。在实际应用中,AI技术极大地推动了流域水文和生态研究向自动化、智能化方向发展,为解决复杂的流域水资源与生态问题提供了强有力的工具。

【专家】:刘教授,重点双一流高校资深教授,和美国SWAT软件开发方长期合作,重点从事流域生态、面源污染模拟及控制等领域的研究,发表多篇该领域SCI论文及主持完成多项科研与工程项目,具有资深的技术底蕴和专业背景。

【实践部分】SWAT模型在水文水资源、面源污染模拟中的应用及典型案例分析

一、SWAT模型及应用介绍

1.1 面源污染概要
1.2 SWAT模型及应用
1.3 AI大模型辅助SWAT应用
1.4 SWAT模型原理
1.5 SWAT模型输入文件
1.6 ArcGIS Pro下的SWAT模型

二、SWAT模型中GIS必备技术

2.1 ArcGIS Pro的优势
2.2 ArcGIS Pro安装和注意事项
2.3 ArcGIS Pro必备技术
2.4 ArcGIS Pro常见数据格式

三、SWAT模型操作流程

3.1 SWAT模型安装
3.2 建立SWAT项目
3.3 SWAT模型子流域划分
3.4 HRU划分
3.5 气象数据及其它数据输入
3.6 SWAT运行及结果读取

四、SWAT结果分析及地图制作

4.1 SWAT结果查看与导出
4.2 SWAT结果时间变化分析
4.3 SWAT结果空间变化分析
4.4 SWAT结果符号设置与地图制图

五、DEM数据制备流程

5.1 DEM数据的作用
5.2 认识DEM数据
5.3 DEM数据的获取
5.4 DEM数据的预处理

六、掩膜数据制备流程

6.1 掩膜数据的作用与原理
6.2 认识burn in数据
6.3 ArcGIS Pro数字化简介
6.4 制作研究区掩膜数据

七、土地利用数据制备流程

7.1 土地利用调用流程
7.2 土地利用的获取
7.3 土地利用处理
7.4 ArcGIS Pro遥感数据解译土地利用
7.5 土地利用类型索引表建立

八、土壤数据制备流程

8.1 土壤数据调用流程
8.2 土壤数据的获取
8.3 土壤数据的处理
8.4 SWAT土壤数据库参数
8.5 土壤数据库参数计算
8.6 土壤类型索引表的建立

九、气象数据制备流程

9.1 气象数据的调用原理
9.2 气象数据获取
9.3 气象数据处理
9.4天气发生器介绍及参数计算
9.5 气象站点索引文件制作  

十、其它数据制备流程

10.1 点源污染输入
10.2 水库数据输入
10.3 灌溉措施输入
10.4 管理措施输入

十一、参数率定与结果验证

11.1 参数率定与结果验证原理
11.2 SWAT-CUP软件介绍
11.3 SWAT-CUP水量率定与验证
11.4 SWAT-CUP水质率定与验证
11.5 参数敏感性分析
11.6 率定验证后参数回带及模拟

十二、SWAT模型结果分析

12.1 水源涵养量分析
12.2 SWAT模型泥沙分析
12.3 面源污染时空变化分析

【进阶部分】SWAT模型高阶应用暨无资料地区建模、不确定分析与气候变化、土地利用对面源污染影响模型改进及案例分析

一、SWAT模型应用热点分析

1.1 SWAT模型应用文献解析及热点剖析
1.2 讨论

二、AI大模型辅助SWAT模型建模与分析

2.1目前常用大模型介绍
2.2 如何使用好AI
2.3 prompt介绍
2.4 AI大模型与SWAT模型建模与分析

三、无资料地区快速建立SWAT模型

3.1 无资料地区DEM数据制备
3.2 无资料地区土地利用制备
3.3 无资料地区土壤数据制备
3.4 无资料地区气象数据制备
3.5 SWAT建模过程中的AI应用
3.6 案例分析:遥感产品和SWAT模型结合研究

四、基于控制单元的流域SWAT模型建立

4.1 ArcGIS Pro水文分析及SWAT应用
4.2 pre-defined子流域及河网完整制备及注意事项
4.3 HRU深入剖析及可视化分析
4.4 pre-defined建模过程中的AI应用
4.5 案例分析:基于控制单元的流域SWAT模型建立

五、SWAT模型不确定性分析

5.1 不确定性分析
5.2 输入不确定性分析
5.3 参数不确定性分析
5.4 不确定性分析中的AI应用
5.5 案例分析:AI辅助下SWAT模型中DEM数据的不确定性分析

六、未来气候变化对水资源及面源污染的影响

6.1 气候变化简介
6.2 CMIP6数据介绍及下载
6.3 基于ArcGIS Pro及python的CMIP6数据处理
6.4 基于AI的CMIP6数据处理
6.5 案例分析:气候变化对SWAT模拟结果的影响 

七、土地利用变化对水资源及面源污染的影响

7.1 土地利用变化简介
7.2 ArcGIS Pro土地利用变化分析
7.3 土地利用变化对SWAT模型结果的影响
7.4 FLUS未来土地利用变化预测
7.5 基于AI的土地利用变化分析
7.6 案例分析:土地利用变化对SWAT模拟结果的影响

八、关键源区及BMPs设置

8.1 最佳管理措施介绍
8.2 关键源区分析
8.3 SWAT中BMP的设置
8.4 BMP效果分析
8.5 BMP实施中的AI应用
8.6 案例分析:退耕还林措施对SWAT模拟结果的影响

九、SWAT改进与模型耦合

9.1 SWAT模型代码修改及应用
9.2 与SWAT模型结合的常用模型文献分析
9.3 SWAT模型改进中的AI应用
9.4 案例分析:SWAT模型初损率改进及对水资源的影响分析

十、SWAT建模过程中常见问题汇总及解答


★ 点 击 下 方 关 注,获取海量教程和资源!

↓↓↓

相关文章:

基于ArcGIS Pro的SWAT模型在流域水循环、水生态模拟中的应用及案例分析;SWAT模型安装、运行到结果读取全流程指导

目前,流域水资源和水生态问题逐渐成为制约社会经济和环境可持续发展的重要因素。SWAT模型是一种基于物理机制的分布式流域水文与生态模拟模型,能够对流域的水循环过程、污染物迁移等过程进行精细模拟和量化分析。SWAT模型目前广泛应用于流域水文过程研究…...

Docker下TestHubo安装配置指南

TestHubo是一款开源免费的测试管理工具, 下面介绍Docker 私有部署的安装与配置。TestHubo 私有部署版本更适合有严格数据安全要求的企业,支持在本地或专属服务器上运行,以实现对数据和系统的完全控制。 1、Docker 服务端安装 Docker安装包下…...

AWS、Google Cloud Platform (GCP)、Microsoft Azure、Linode和 桔子数据 的 价格对比

要对比 AWS、Google Cloud Platform (GCP)、Microsoft Azure、Linode 和 桔子数据 的 价格,我们需要先了解每个平台的定价模型、服务类型以及不同服务之间的价格差异。以下是根据各个平台常见服务(如计算实例、存储、数据传输等)做的一个 简化…...

基础优化方法

梯度下降 学习率代表每一次沿着这个方向走多远, batchsize的概念 梯度下降通过不断沿着反梯度方向更新参数求解 两个重要的超参数是 batchsize 和 学习率...

v语言介绍

V 语言是一种多用途的编程语言,可以用于前端开发、后端开发、系统编程、游戏开发等多个领域。它的设计哲学是提供接近 C 语言的性能,同时简化开发过程并提高代码的安全性和可读性。接下来我会详细介绍 V 在前后端开发中的应用,并给出一个具体…...

Ubuntu安装Apache Airflow详细指南

本文我们介绍如何在Ubuntu上安装Apache Airflow。Apache Airflow旨在通过编程方式编写、调度和监控工作流。随着数据编排在现代数据工程中变得越来越重要,掌握Apache Airflow等工具可以显著提高您的生产力和效率。 学习Apache Airflow的首要任务是安装单机版本进行测…...

【数据可视化复习方向】

1.数据可视化就是数据中信息的可视化 2.数据可视化主要从数据中寻找三个方面的信息:模式、关系和异常 3.大数据可视化分类:科学可视化、信息可视化、可视分析学 4.大数据可视化作用:记录信息、分析推理、信息传播与协同 5.可视化流程&…...

CentOS下安装RabbitMQ

提示:“奔跑吧邓邓子” 的高效运维专栏聚焦于各类运维场景中的实际操作与问题解决。内容涵盖服务器硬件(如 IBM System 3650 M5)、云服务平台(如腾讯云、华为云)、服务器软件(如 Nginx、Apache、GitLab、Redis、Elasticsearch、Kubernetes、Docker 等)、开发工具(如 Gi…...

探究音频丢字位置和丢字时间对pesq分数的影响

丢字的本质 丢字的本质是在一段音频中一小段数据变为0 丢字对主观感受的影响 1. 丢字位置 丢字的位置对感知效果有很大影响。如果丢字发生在音频信号的静音部分或低能量部分,感知可能不明显;而如果丢字发生在高能量部分或关键音素上,感知…...

音视频入门基础:MPEG2-TS专题(23)——通过FFprobe显示TS流每个packet的信息

音视频入门基础:MPEG2-TS专题系列文章: 音视频入门基础:MPEG2-TS专题(1)——MPEG2-TS官方文档下载 音视频入门基础:MPEG2-TS专题(2)——使用FFmpeg命令生成ts文件 音视频入门基础…...

Bert各种变体——RoBERTA/ALBERT/DistillBert

RoBERTa 会重复一个语句10次,然后每次都mask不同的15%token。丢弃了NSP任务,论文指出NSP任务有时甚至会损害性能。使用了BPE ALBERT 1. 跨层参数共享 可以共享多头注意力层的参数,或者前馈网络层的参数,或者全部共享。 实验结果…...

Go入门篇:(一)golang的安装和编辑工具安装

一、前言 最近我有幸接触到Go语言,深入了解后,发现go语言确实有很多让人惊叹的地方。作为一个有着多年Java编程经验的程序员,我深深地被它所吸引,并且决定记录下我的学习之路,以便与大家分享我的经验和感悟。 与Java不同,Go语言的语法和运行效率都非常高,特别是对于并…...

【技术实战】R语言统计分析与可视化从入门到精通

前言 随着大数据时代的到来,数据分析已经成为各行各业的重要技能。R语言作为一种强大的统计分析和数据可视化工具,广泛应用于科学研究、数据分析和商业决策支持。 本文将带领读者从入门到精通,掌握R语言在统计分析和数据可视化方面的核心技…...

【Lua之·Lua与C/C++交互·Lua CAPI访问栈操作】

系列文章目录 文章目录 前言一、概述1.1 Lua堆栈 二、栈操作2.1 基本的栈操作2.2 入栈操作函数2.3 出栈操作函数2.4 既入栈又出栈的操作函数2.5 栈检查与类型转换函数2.5 获取表数据 三、实例演示总结 前言 Lua是一种轻量级的、高性能的脚本语言,经常被用于游戏开发…...

LabVIEW实现LoRa通信

目录 1、LoRa通信原理 2、硬件环境部署 3、程序架构 4、前面板设计 5、程序框图设计 6、测试验证 本专栏以LabVIEW为开发平台,讲解物联网通信组网原理与开发方法,覆盖RS232、TCP、MQTT、蓝牙、Wi-Fi、NB-IoT等协议。 结合实际案例,展示如何利用LabVIEW和常用模块实现物联网系…...

【数字化】华为数字化转型架构蓝图-2

目录 1、客户联结的架构思路 1.1 ROADS体验设计 1.2 具体应用场景 1.3 统一的数据底座 1.4 案例与成效 2、一线作战平台的架构思路 2.1 核心要素 2.2 关键功能 2.3 实施路径 2.4 案例与成效 3、能力数字化的架构思路 3.1 能力数字化的核心目标 3.2 能力数字化的实…...

【Agent】AutoGen Studio2.0开源框架-UI层环境安装+详细操作教程(从0到1带跑通智能体AutoGen Studio)

💥 欢迎来到我的博客!很高兴能在这里与您相遇! 首页:GPT-千鑫 – 热爱AI、热爱Python的天选打工人,活到老学到老!!!导航 - 人工智能系列:包含 OpenAI API Key教程, 50个…...

Linux 网络配置基础

文章目录 1. 前言2. Linux 的网络配置2.1 传统的网络配置方法2.2 新的网络配置方法2.3 用 DHCP 客户端管理网络 3. 参考资料 1. 前言 限于作者能力水平,本文可能存在谬误,因此而给读者带来的损失,作者不做任何承诺。 2. Linux 的网络配置 …...

科技创新 数智未来|清科·沙丘投研院走进竹云

12月20日,清科沙丘投研院带领企投家团队走进竹云交流分享,聚焦技术创新、企业数字化管理、行业前沿应用案例等热点议题,深入探讨数字技术如何点燃企业高质量发展的澎湃动力,共话企业数字化、智能化发展之道。 达晨财智股权管理部…...

Java 常见面试算法题汇总与解析

Java 常见面试算法题汇总与解析 算法题是程序员面试中常见的一部分,也是提升编程能力的核心手段。本文将汇总一些 Java 中常见的算法题,并提供详细的解析和实现代码,帮助开发者更好地理解和掌握算法。 一、字符串相关算法 1.1 字符串反转 …...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...