当前位置: 首页 > news >正文

以太网帧结构

以太网帧结构

目前,我们局域网当中应用最广的技术或者协议啊,就是以太网。我们首先来看一下以太网的真结构。这块内容这里边再系统的来给大家去展开说一下,以太网真格式就如下面这个图。所示前面有八个字节,是用于时钟同步的,不计算入增长。啊,但是你要了解一下它有七个字节的先导字段,由一个字节的真开始标识符。

前面7+1字节用于时钟同步,不算入帧长.
数据46-1500字节,不够至少填充到46字节.
校验位4字节,CRC循环冗余校验 32位(4 x 8).
最小帧长64字节:6+6+2+46+4=64.
最大帧长1518字节:6+6+2+1500+4=1518.

前面的这个先导字段和增增开式标识符,这个是不计算入增长的,这个不用管对吧?所以我们并平时看以太网的这个增结构,重点就是看的这这后面这一段OK啊,看到后面这一段最小正常啊,就是6+6+2+46+4=64,最小正常64字节,我们的确认中默认都是64字节的小帧。然后它的最大帧长1518,这个数据最大为1500啊,1500这个也叫mtu。

其实以太网真严格意义上来讲啊,它有两种格式啊,默认就按这种来吧,这是用的最多的。最大最小增长要记住哦,单位是比特,然后还有一个考点就是以太网增长的最大,那就以太网它的最大运送效率是多少?

最大数据是1500帧呀,整个是1518,这个除出来应该是98%吧?啊,最小效率是不46,最小运营46字节。然后除以除以多少,除以64,这算出来应该是70%几啊,可以算一下。

以太网报文封装

应用层的数据,我们首先封装是TCP的报头,或者是udp的报头,考试一般考TCP多一点TCP段向下进行网络层的封装,封装一个IP报头,报头再向下进行二层。以太网帧前面也说了封装14个字节的头,然后还有4个字节的尾巴对吧啊,然后中间这一部分mtu。46到1500字节,它是包含IP头和TCP报头的。

对于我们的以太网帧来讲啊,这两个头其实是以太网帧的数据,它其实是以太网的数据哦,就包含在以太网的mtu里边的。这个大家需要注意啊,需要注意数据封装是这么封装的,了解了这个封装之后我们来看练习题。

练习题

解析:以太网的mtu最大是1500。但是里面IP头。TCP头,然后应用层的数据。这个总的是1500最大IP头默认20字节TCP头默认20字节。TCP段包含TCP头但是不包含IP的头,所以这一段,一共是多少啊?一共是1480吧。

解析:以太网规定数据字段的长度最小值为46字节,当长度小于此值时,应该加以填充填充就是在数据字段后面加入一个整数字节的填充字段,最大1500字节,除去IP头20字节后,就是1480字节。

解析:以太网MTU最大为1500,出去20字节TCP头和20字节IP头,数据部分最大是1460字节。

解析:以太网帧结构如下图所示(先导字段和帧开始标识,不计入帧长)。以太网数据部分为46~1500字节,而以太网帧长范围为64~1518字节,当MTU为1500字节时,帧长为1518字节,传输效率最高,所以最大传输效率为1500/1518=98.8%。这个就把它记住就行了。

解析:以太网最小效率:[64-(14+4)1/64*100%=71.9%,最大网络效率为(1518-18)/1518x100%=98.8%。但算出来应该等于70%几啊,这道题应该是算出来没有答案。那怎么办呢啊?选一个最小的吧啊,勉强选一个c吧

相关文章:

以太网帧结构

以太网帧结构 目前,我们局域网当中应用最广的技术或者协议啊,就是以太网。我们首先来看一下以太网的真结构。这块内容这里边再系统的来给大家去展开说一下,以太网真格式就如下面这个图。所示前面有八个字节,是用于时钟同步的&…...

QT调用Sqlite数据库

QT设计UI界面,后台访问数据库,实现数据库数据的增删改查。 零售商店系统 数据库表: 分别是顾客表,订单详情表,订单表,商品表 表内字段详情如下: 在QT的Pro文件中添加sql,然后添加头…...

前端

前端页面 Web页面 PC端程序页面 移动端APP页面 ... HTML页面 HTML超文本标记页面 超文本:文本,声音,图片,视频,表格,链接 标记:由许多标签组成 HTML页面运行到浏览器上面 vscode便捷插件使用 vs…...

【Git】—— 使用git操作远程仓库(gitee)

目录 一、远程仓库常用命令 1、从远程仓库克隆项目 2、查看关联的远程仓库 3、添加关联的远程仓库 4、移除关联的远程仓库 5、将本地仓库推送到远程仓库 6、从远程仓库拉取项目 二、分支命令 1、查询分支 2、创建分支 3、切换分支 4、推送到远程分支 5、合并分支 …...

Paddler负载均衡器

Paddler负载均衡器 Paddler本身是用Go语言编写的,没有直接的Python接口,但可以通过以下方式在Python中使用: 执行命令行调用 在Python中可以使用 subprocess 模块来调用Paddler的命令行工具,实现负载均衡功能 。例如: import subprocessdef start_paddler_agent():com…...

OSCP - Proving Grounds - Slort

主要知识点 文件包含 windows的reveseshell 具体步骤 执行nmap,依旧是很多端口开放,尝试了ftp,smb等均失败 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-10-13 12:00 UTC Nmap scan report for 192.168.53.53 Host is up (0.00095s latency). Not sho…...

YoloV9改进策略:Head改进|DynamicHead,利用注意力机制统一目标检测头部|即插即用

摘要 论文介绍 本文介绍了一种名为DynamicHead的模块,该模块旨在通过注意力机制统一目标检测头部,以提升目标检测的性能。论文详细阐述了DynamicHead的工作原理,并通过实验证明了其在COCO基准测试上的有效性和效率。 创新点 DynamicHead模块的创新之处在于它首次尝试在一…...

BFD综合详细实验配置案例

前言 本实验的目的是通过配置BGP(边界网关协议)、OSPF(开放式最短路径优先协议)、VRRP(虚拟路由冗余协议)以及BFD(双向转发检测)等网络协议,模拟企业级网络环境中的多协…...

自然语言处理与知识图谱的融合与应用

目录 前言1. 知识图谱与自然语言处理的关系1.1 知识图谱的定义与特点1.2 自然语言处理的核心任务1.3 二者的互补性 2. NLP在知识图谱构建中的应用2.1 信息抽取2.1.1 实体识别2.1.2 关系抽取2.1.3 属性抽取 2.2 知识融合2.3 知识推理 3. NLP与知识图谱融合的实际应用3.1 智能问答…...

c# RSA加解密工具,.netRSA加解密工具

软件介绍 名称: c# RSA加解密工具,.netRSA加解密工具依赖.net版本: .net 8.0工具类型: WinForm源码下载 c# RSA加解密工具,.netRSA加解密工具 依赖项 WinFormsRSA.csproj <Project...

Metricbeat安装教程——Linux——Metricbeat监控ES集群

Metricbeat安装教程——Linux 一、安装 下载安装包&#xff1a; 官网下载地址&#xff1a;https://www.elastic.co/cn/downloads/beats/metricbeat 上传包到linux 切换到安装目录下 解压&#xff1a;tar -zxvf metricbeat-7.17.1-linux-x86_64.tar.gz 重命名安装文件夹 mv met…...

一万多字拆解java中——“ 注解 ”的一切(三)(已完结)

前言&#xff1a; 咱们书接上回&#xff0c;上次按照框架讲了 第一篇&#xff0c;我们讲到了&#xff1a; ①注解的引入&#xff08;简单概述&#xff09;&#xff1a;在jdk5.0的时候 ②注解与注释的区别&#xff1a; 注释 是为了帮助人类阅读代码&#xff0c;不会对程序的执…...

记一次rac故障原因分析(虚拟化平台)

一 现象描述 XX客户于1月14号凌晨业务中断&#xff0c;检查数据库发现数据库集群宕机。 XX客户于2月14号春节初五早上业务异常&#xff0c;连接数据库无响应。 二 问题详细诊断 1月14号故障 1月14号凌晨2点&#xff0c;客户反馈业务中断&#xff0c;发现节点1无法连接&…...

Vue CLI 3 项目构建

Vue CLI 是一个功能强大、易于使用的工具&#xff0c;可以极大地简化 Vue.js 应用的开发过程。通过快速创建项目、灵活的插件系统和丰富的配置选项&#xff0c;开发者可以更专注于业务逻辑&#xff0c;而不是底层配置。无论是新手还是经验丰富的开发者&#xff0c;Vue CLI 都是…...

1114 Family Property (25)

This time, you are supposed to help us collect the data for family-owned property. Given each persons family members, and the estate&#xff08;房产&#xff09;info under his/her own name, we need to know the size of each family, and the average area and n…...

详细介绍Sd-WebUI提示词的语法规则

AI绘画中最大的门槛就是提示词&#xff0c;对英语水平、文学水平、想象力、灵感等要求较高。不能每次一输入正向提示词&#xff08;positive prompt&#xff09;&#xff0c;就只会写a girl, big eyes, red hair。虽然sd-webui软件可以直接翻译&#xff0c;输入一个子母后会立刻…...

document.body为null问题

调用document.body.append方法出现null的问题&#xff0c;一看就是放在了head中&#xff0c;一种方案是放在最后面&#xff0c;要不就和jquery一样监听&#xff0c;下面是代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8…...

2024国赛A问题5

问题五 龙头最大速度优化模型的建立 问题五在问题四的曲线的基础上对速度进行了约束&#xff0c;即在逐步改变龙头速度的情况下&#xff0c;各个龙身的速度也会依次改变&#xff0c;给出龙头的最大行进速度,使得舞龙队各把手的速度均不超过 2 m/s。即可依此构建一个龙头速度的…...

Kalilinux下MySQL的安装

MySQL是一个广泛使用的开源关系型数据库管理系统&#xff0c;它是最流行的关系型数据库之一。在Kalilinux下安装MySQL可以为我们提供方便的数据库管理和开发环境。本文将介绍如何在Kalilinux中安装MySQL&#xff0c;并提供一些常用的代码示例。 步骤一&#xff1a;更新软件包 …...

文件路径与Resource接口详解

目录 第一章、快速了解文件路径1.1&#xff09;什么是文件路径&#xff1f;1.1.1&#xff09;绝对路径1.1.2&#xff09;相对路径 1.2&#xff09;重要&#xff1a;相对路径的表示方法1.2.1) ./ 与 ../ 1.3&#xff09;文件路径与环境变量1.3.1&#xff09;什么是环境变量1.3.2…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...