当前位置: 首页 > news >正文

Python的Pandas--Series的创建和实现

1.Series函数的格式:

pandas.Series(data,index,dtype,name,copy)

data:一组数据(ndarray类型、list、dict等类)或标量值

index:数据索引标签。如果不指定,默认为整数,从0开始

dtype:数据类型,默认会自己判断

name:设置的名称

copy:拷贝数据,默认为False

# 创建Series对象
import pandas as pd
import numpy as np
pd1 = pd.Series([100,200,300,400])
pd2 = pd.Series((100,200,300,400))
pd3 = pd.Series(np.array((100,200,300,400)))
print("pd1:")
print(pd1)
print("pd1的数据类型是:",type(pd1))
print("pd2:")
print(pd2)
print("pd2的数据类型是:",type(pd1))
print("pd3:")
print(pd3)
print("pd3的数据类型是:",type(pd1))

pd1从列表生成

pd2从元组生成

pd3从Numpy的数组生成

在Series函数中,五个参数中必须有data(一组数据)参数,不写index默认为整数,从0开始,dtype默认会自己判断可写可不写,name设置的名称可省略,copy拷贝的数据 默认为False

注意:Series中的索引值可以是重复的

# Series对象的索引
import pandas as pd
import numpy as np
value = ["name","sex","score","class"]
print("--------ds1--------")
ds1 = pd.Series(value)
print(ds1)
print("--------ds2--------")
ds2 = pd.Series(value,[10,20,30,40])
print(ds2)
print("--------ds3--------")
index = ["name","sex","score","class"]
ds3 = pd.Series(value,index)
print(ds3)
print("--------ds4--------")
ds4 = pd.Series({'a':10,'b':20,'c':30,'d':40})
print(ds4)
print("--------ds5--------")
ds5 = pd.Series(5,index = [0,1,2,3])
print(ds5)

ds1是默认索引

ds2是显性整数索引

ds3是显性命名索引

ds4通过字典类型创建,键就是索引的名字

ds5通过标量创建,此时必须给出索引,通过索引确定大小

2.Series的values和indexs的属性

Series是由一组数据values和索引index组成,因此Series对象最重要的两个对象是数据values和索引index。可查看访问这两个对象,可对index对象重新赋值以重新建立索引,但是不能对values重新赋值

# Series对象的values和index
import pandas as pd
import numpy as np
value = ["zs","male",80,"class1"]
index = ['name','sex','score','class']
ds = pd.Series(value,index)
print("Series对象的values和index的属性访问")
print("ds的values:",ds.values)
print("ds的index:",ds.index)
print("Series对象的values和index的重新赋值")
ds.index = ['姓名','性别','成绩','年龄']
print(ds)

3.Series对象的索引

Series是由一组数据values和索引index组成,通过index可以访问对象的value

Series非常像ndarray,意味着可以采用NumPy中的一维数组操作类似的索引操作:单值元素索引和切片。如果显式给出了索引名称,也可以像字典那样通过“键”来访问对应的值

默认索引:只能通过默认整数下标访问和切片(不能是负值索引)

显式名称索引:既可以通过默认整数下标访问和切片(可以像列表那样使用负值索引),也可以通过“键”名称访问和切片

显式整数索引:只能通过指定整数下标访问元素,通过隐式整数索引(不能是负值索引)进行切片

# Series对象的索引
import pandas as pd
import numpy as np
x = pd.Series([10,20,30,40])
# 默认索引下标索引
y = pd.Series([10,20,30,40],index = ['a','b','c','d'])
# 显式名称索引下标索引
z = pd.Series([10,20,30,40],index = [100,200,300,400])
# 显式整数索引下标索引
print("x[1]=",x[1])
print("x[0:2]=",x[0:2])
print("y['b']=",y['b'])
print("y['a':'c'] =",y['a':'c'])
print("z[200]=",z[200])
print("z[0:2]=",z[0:2])

4.Series的运算和操作

NumPy中的数组运算,在Series中都保留了,都可以使用,并且Series进行数组运算的时候,索引与值之间的映射关系不会发生改变。也就是说,在操作Series的时候,基本上可以吧Series看成NumPy中的ndarray数组来进行操作。ndarray数组的绝大多数操作都可以在Series上应用

import pandas as pd
import numpy as np
x = pd.Series([10,20,5,13]) 
#默认整数下标索引
m = x>20
n = x[x>10]
p = x*10
q = np.max(x)
print("x>20:",m)
print("x[x>10]:",n)
print("x*10:",p)
print("np.max(x):",q)

Series和ndarray之间的主要区别是,Series上的操作会根据索引自动对齐数据。因此,可以不考虑所涉及的Series的数据对齐

相关文章:

Python的Pandas--Series的创建和实现

1.Series函数的格式: pandas.Series(data,index,dtype,name,copy) data:一组数据(ndarray类型、list、dict等类)或标量值 index:数据索引标签。如果不指定,默认为整数,从0开始 dtype&#x…...

OCR实践-问卷表格统计

前言 书接上文 OCR实践—PaddleOCROCR实践-Table-Transformer 本项目代码已开源 放在 Github上,欢迎参考使用,Star https://github.com/caibucai22/TableAnalysisTool 主要功能说明:对手动拍照的问卷图片进行统计分数(对应分数…...

uniapp中的条件编译

在script中 // #ifdef APP-PLUS console.log("11"); // #endif// #ifdef MP-WEIXIN console.log("22"); // #endif 在template中 <!-- #ifdef APP-PLUS --><view>哈哈哈</view> <!-- #endif --><!-- #ifdef MP-WEIXIN -->…...

Segment Routing Overview

大家觉得有意义和帮助记得及时关注和点赞!!! Segment Routing (SR) 是近年来网络领域的一项新技术&#xff0c;“segment” 在这里 指代网络隔离技术&#xff0c;例如 MPLS。如果快速回顾网络设计在过去几十年的 发展&#xff0c;我们会发现 SR 也许是正在形成的第三代网络设计…...

【K8s】专题十五(6):Kubernetes 网络之 Pod 网络调试

本文内容均来自个人笔记并重新梳理&#xff0c;如有错误欢迎指正&#xff01; 如果对您有帮助&#xff0c;烦请点赞、关注、转发、订阅专栏&#xff01; 专栏订阅入口 | 精选文章 | Kubernetes | Docker | Linux | 羊毛资源 | 工具推荐 | 往期精彩文章 【Docker】&#xff08;全…...

CMake 构建项目并整理头文件和库文件

本文将介绍如何使用 CMake 构建项目、编译生成库文件&#xff0c;并将头文件和库文件整理到统一的目录中以便在其他项目中使用。 1. 项目结构 假设我们正在构建一个名为 rttr 的开源库&#xff0c;初始的项目结构如下&#xff1a; D:\WorkCode\Demo\rttr-master\|- src\ …...

Boost之log日志使用

不讲理论&#xff0c;直接上在程序中可用代码&#xff1a; 一、引入Boost模块 开发环境&#xff1a;Visual Studio 2017 Boost库版本&#xff1a;1.68.0 安装方式&#xff1a;Nuget 安装命令&#xff1a; #只安装下面几个即可 Install-package boost -version 1.68.0 Install…...

多功能jquery图片预览放大镜插件

xZoom是一款多功能的jquery图片预览放大镜插件。它支持多种图片放大模式&#xff0c;可以和Fancy Box或Magnific Pop-up等插件结合使用&#xff0c;功能非常强大。 在线预览 下载 使用方法 在页面中引入jquery和xzoom.css以及xzoom.js文件。 <link rel"stylesheet&…...

CSS系列(39)-- Shapes详解

前端技术探索系列&#xff1a;CSS Shapes详解 ✨ 致读者&#xff1a;探索形状布局的艺术 &#x1f44b; 前端开发者们&#xff0c; 今天我们将深入探讨 CSS Shapes&#xff0c;这个强大的形状布局特性。 基础形状 &#x1f680; 圆形与椭圆 /* 基础圆形 */ .circle {widt…...

AI 神经网络在智能家居场景中的应用

在科技持续进步的当下&#xff0c;智能家居领域正经历着深刻变革&#xff0c;AI 神经网络技术的融入成为推动这一变革的关键力量&#xff0c;为家居生活带来了诸多显著变化与提升&#xff0c;本文将几种常见的AI算法应用做了一下总结&#xff0c;希望对物联网从业者有所帮助。 …...

Rocky DEM tutorial7_Conical Dryer_锥形干燥器

tutorial 7_Conical Dryer_锥形干燥器 文章目录 tutorial 7_Conical Dryer_锥形干燥器0. 目的1. 模型介绍2. 模型设置2.1设置physics2.2 导入几何2.3 设置motion2.4 Boundary边界设置2.5 设置材料2.6设置材料间相互作用2.7 创建粒子2.8 设置颗粒进口2.9 求解器设置3. 后处理Enj…...

CSS(二):美化网页元素

目录 字体样式 文本样式 列表样式 背景图片 字体样式 字体相关的 CSS 属性&#xff1a; font-family&#xff1a;设置字体font-size&#xff1a;设置字体大小font-weight&#xff1a;设置字体的粗细&#xff08;如 normal, bold, lighter 等&#xff09;color&#xff1a;…...

平方根无迹卡尔曼滤波(SR-UKF)算法,用于处理三维非线性状态估计问题

本MATLAB 代码实现了平方根无迹卡尔曼滤波&#xff08;SR-UKF&#xff09;算法&#xff0c;用于处理三维非线性状态估计问题 文章目录 运行结果代码概述代码 运行结果 三轴状态曲线对比&#xff1a; 三轴误差曲线对比&#xff1a; 误差统计特性输出&#xff08;命令行截图&…...

【论文笔记】Visual Alignment Pre-training for Sign Language Translation

&#x1f34e;个人主页&#xff1a;小嗷犬的个人主页 &#x1f34a;个人网站&#xff1a;小嗷犬的技术小站 &#x1f96d;个人信条&#xff1a;为天地立心&#xff0c;为生民立命&#xff0c;为往圣继绝学&#xff0c;为万世开太平。 基本信息 标题: Visual Alignment Pre-tra…...

NLP基础知识 - 向量化

NLP基础知识 - 向量化 目录 NLP基础知识 - 向量化 NLP基础知识 - 向量化目录什么是向量化&#xff1f;为什么需要向量化&#xff1f;常见的向量化方法1. 词袋模型&#xff08;Bag of Words, BoW&#xff09;2. TF-IDF&#xff08;词频-逆文档频率&#xff09;3. 词嵌入&#x…...

JAVA学习笔记_MySQL进阶

文章目录 存储引擎InnoDB引擎MyISAM引擎Memory存储引擎的选择 索引索引数据结构Btree(多路平衡查找树)BTreeHash索引为什么InnoDQB存储引擎采用Btree索引结构 索引分类思考题 索引语法索引性能分析慢查询日志show profiesexplain 索引的使用规则最左前缀法则索引失效SQL提示覆盖…...

ffmpeg: stream_loop报错 Error while filtering: Operation not permitted

问题描述 执行ffmpeg命令的时候&#xff0c;报错&#xff1a;Error while filtering: Operation not permitted 我得命令如下 ffmpeg -framerate 25 -y -i /data/workerspace/mtk/work_home/mtk_202406111543-l9CSU91H1f1b3/tmp/%08d.png -stream_loop -1 -i /data/workerspa…...

Vue.use()和Vue.component()

当很多页面用到同一个组件&#xff0c;又不想每次都在局部注册时&#xff0c;可以在main.js 中全局注册 Vue.component()一次只能注册一个组件 import CcInput from /components/cc-input.vue Vue.component(CcInput);Vue.use()一次可以注册多个组件 对于自定义的组件&#…...

javaweb 04 springmvc

0.1 在上一次的课程中&#xff0c;我们开发了springbootweb的入门程序。 基于SpringBoot的方式开发一个web应用&#xff0c;浏览器发起请求 /hello 后 &#xff0c;给浏览器返回字符串 “Hello World ~”。 其实呢&#xff0c;是我们在浏览器发起请求&#xff0c;请求了我们…...

[Visual studio] 性能探测器

最近发现VS的profile还是很好用的&#xff0c; 可以找到项目代码的瓶颈&#xff0c;比如发现CPU的每一个函数的时间占比&#xff0c;分析代码耗时分布&#xff0c;和火焰图一样的效果 如何使用 1. 打开你的项目&#xff0c;调整成release状态 2. 点击调试->性能探测器 3…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

【实施指南】Android客户端HTTPS双向认证实施指南

&#x1f510; 一、所需准备材料 证书文件&#xff08;6类核心文件&#xff09; 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版

1.题目描述 2.思路 当前的元素可以重复使用。 &#xff08;1&#xff09;确定回溯算法函数的参数和返回值&#xff08;一般是void类型&#xff09; &#xff08;2&#xff09;因为是用递归实现的&#xff0c;所以我们要确定终止条件 &#xff08;3&#xff09;单层搜索逻辑 二…...

boost::filesystem::path文件路径使用详解和示例

boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类&#xff0c;封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解&#xff0c;包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...

统计学(第8版)——统计抽样学习笔记(考试用)

一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征&#xff08;均值、比率、总量&#xff09;控制抽样误差与非抽样误差 解决的核心问题 在成本约束下&#xff0c;用少量样本准确推断总体特征量化估计结果的可靠性&#xff08;置…...

python可视化:俄乌战争时间线关键节点与深层原因

俄乌战争时间线可视化分析&#xff1a;关键节点与深层原因 俄乌战争是21世纪欧洲最具影响力的地缘政治冲突之一&#xff0c;自2022年2月爆发以来已持续超过3年。 本文将通过Python可视化工具&#xff0c;系统分析这场战争的时间线、关键节点及其背后的深层原因&#xff0c;全面…...

标注工具核心架构分析——主窗口的图像显示

&#x1f3d7;️ 标注工具核心架构分析 &#x1f4cb; 系统概述 主要有两个核心类&#xff0c;采用经典的 Scene-View 架构模式&#xff1a; &#x1f3af; 核心类结构 1. AnnotationScene (QGraphicsScene子类) 主要负责标注场景的管理和交互 &#x1f527; 关键函数&…...