一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
机器学习实战通常是将理论与实践结合,通过实际的项目或案例,帮助你理解并应用各种机器学习算法。下面是一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类。我们将通过该数据集来演示数据预处理、模型训练、评估和预测的全过程。

访问更多内容来源 https://ai.tmqcjr.com
1. 安装所需库
首先,确保你已安装了scikit-learn和matplotlib等库,如果没有,请通过以下命令安装:
bash
复制代码
pip install scikit-learn matplotlib
2. 机器学习实战例程
导入必要的库
python
复制代码
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
加载数据集
我们使用Scikit-Learn自带的鸢尾花数据集,这是一个经典的机器学习数据集。
python
复制代码
# 加载鸢尾花数据集 iris = load_iris() X = iris.data # 特征数据(花瓣和萼片的长度和宽度) y = iris.target # 标签数据(花的种类)
数据探索
在开始训练模型之前,我们可以对数据进行简单的探索,比如查看数据的维度和前几行。
python
复制代码
# 查看数据集的结构 print(f"数据集的特征名称: {iris.feature_names}") print(f"数据集的标签名称: {iris.target_names}") print(f"数据集的特征形状: {X.shape}") print(f"数据集的标签形状: {y.shape}") # 查看前5行数据 print(f"特征数据:\n{X[:5]}") print(f"标签数据:\n{y[:5]}")
数据划分
我们将数据集划分为训练集和测试集,通常使用70%训练,30%测试的比例。
python
复制代码
# 划分数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) print(f"训练集的样本数量: {X_train.shape[0]}") print(f"测试集的样本数量: {X_test.shape[0]}")
数据预处理
在使用机器学习模型之前,通常需要对数据进行标准化处理,以便提高模型的性能。
python
复制代码
# 数据标准化:将特征缩放至均值为0,方差为1的标准正态分布 scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)
训练模型
我们将训练多个机器学习模型进行比较。这里使用常见的几种分类模型:K近邻(KNN)、支持向量机(SVM)、决策树和随机森林。
1. K近邻(KNN)
python
复制代码
# 初始化KNN模型并训练 knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) # 在测试集上评估模型 y_pred_knn = knn.predict(X_test) print("KNN分类报告:") print(classification_report(y_test, y_pred_knn)) print(f"KNN的准确率: {accuracy_score(y_test, y_pred_knn)}")
2. 支持向量机(SVM)
python
复制代码
# 初始化SVM模型并训练 svm = SVC(kernel='linear') svm.fit(X_train, y_train) # 在测试集上评估模型 y_pred_svm = svm.predict(X_test) print("SVM分类报告:") print(classification_report(y_test, y_pred_svm)) print(f"SVM的准确率: {accuracy_score(y_test, y_pred_svm)}")
3. 决策树(Decision Tree)
python
复制代码
# 初始化决策树模型并训练 dt = DecisionTreeClassifier(random_state=42) dt.fit(X_train, y_train) # 在测试集上评估模型 y_pred_dt = dt.predict(X_test) print("决策树分类报告:") print(classification_report(y_test, y_pred_dt)) print(f"决策树的准确率: {accuracy_score(y_test, y_pred_dt)}")
4. 随机森林(Random Forest)
python
复制代码
# 初始化随机森林模型并训练 rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train) # 在测试集上评估模型 y_pred_rf = rf.predict(X_test) print("随机森林分类报告:") print(classification_report(y_test, y_pred_rf)) print(f"随机森林的准确率: {accuracy_score(y_test, y_pred_rf)}")
评估模型
使用classification_report来评估模型的性能,显示精确度(Precision)、召回率(Recall)和F1-score。accuracy_score则显示整体的分类准确率。
python
复制代码
# 显示每个模型的准确率 models = ['KNN', 'SVM', '决策树', '随机森林'] accuracies = [ accuracy_score(y_test, y_pred_knn), accuracy_score(y_test, y_pred_svm), accuracy_score(y_test, y_pred_dt), accuracy_score(y_test, y_pred_rf) ] for model, accuracy in zip(models, accuracies): print(f"{model}的准确率: {accuracy}")
混淆矩阵
为了进一步分析模型的分类效果,可以绘制混淆矩阵。
python
复制代码
# 绘制混淆矩阵 def plot_confusion_matrix(cm, classes): plt.figure(figsize=(6, 6)) plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) plt.xlabel('Predicted label') plt.ylabel('True label') plt.tight_layout() # KNN模型的混淆矩阵 cm_knn = confusion_matrix(y_test, y_pred_knn) plot_confusion_matrix(cm_knn, iris.target_names) # 显示图形 plt.show()
预测新数据
最后,我们可以使用训练好的模型对新的数据进行预测。
python
复制代码
# 使用KNN模型对新样本进行预测 new_data = np.array([[5.1, 3.5, 1.4, 0.2]]) # 一个新的样本(鸢尾花特征) new_data = scaler.transform(new_data) # 标准化 prediction = knn.predict(new_data) print(f"预测的花种类: {iris.target_names[prediction]}")
3. 模型总结
通过上述步骤,我们完成了以下内容:
- 数据加载与预处理:加载鸢尾花数据集并进行标准化处理。
- 模型训练与评估:训练了4个常见的机器学习模型(KNN、SVM、决策树和随机森林),并通过
classification_report和accuracy_score评估了各个模型的性能。 - 模型预测:使用训练好的模型对新数据进行了预测。
4. 总结
- KNN:适合用于小型数据集,计算复杂度较高。
- SVM:对于中小型数据集效果不错,但训练时间较长。
- 决策树:易于理解和解释,但容易过拟合。
- 随机森林:通过集成多棵决策树,通常表现良好,减少了过拟合的风险。
在实际的机器学习项目中,你可以根据任务的特点选择合适的模型,并不断调整参数以优化模型的表现。
相关文章:
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
机器学习实战通常是将理论与实践结合,通过实际的项目或案例,帮助你理解并应用各种机器学习算法。下面是一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的…...
攻防世界web第二题unseping
这是题目 <?php highlight_file(__FILE__);class ease{private $method;private $args;function __construct($method, $args) {$this->method $method;$this->args $args;}function __destruct(){if (in_array($this->method, array("ping"))) {cal…...
动手学深度学习-深度学习计算-3延后初始化
目录 实例化网络 小结 到目前为止,我们忽略了建立网络时需要做的以下这些事情: 我们定义了网络架构,但没有指定输入维度。 我们添加层时没有指定前一层的输出维度。 我们在初始化参数时,甚至没有足够的信息来确定模型应该包含…...
Linux | 零基础Ubuntu搭建JDK
目录 软件简介 在线文档 压缩包安装 下载地址 补:传输软件 传输等待 目录结构 解压安装 配置环境 更新环境 测试JDK结果 APT安装 软件简介 Java Development Kit (JDK) 是 Sun 公司(已被 Oracle 收购)针对 Java 开发员的软件开发工具包。自…...
Android `android.graphics` 包深度解析:架构与设计模式
Android android.graphics 包深度解析:架构与设计模式 目录 引言android.graphics 包概述核心类与架构 CanvasPaintBitmapColorPathShaderMatrix设计模式在 android.graphics 中的应用 工厂模式装饰者模式策略模式享元模式高级图形处理技术 硬件加速离屏渲染自定义 View 中的…...
WPF使用OpenCvSharp4
WPF使用OpenCvSharp4 创建项目安装OpenCvSharp4 创建项目 安装OpenCvSharp4 在解决方案资源管理器中,右键单击项目名称,选择“管理 NuGet 包”。搜索并安装以下包: OpenCvSharp4OpenCvSharp4.ExtensionsOpenCvSharp4.runtime.winSystem.Man…...
你不需要对其他成年人的情绪负责
在这个纷繁复杂的世界里,每个人都是独一无二的个体,背负着各自的故事、梦想与烦恼。在人际交往的广阔舞台上,我们时常会遇到这样的情境:朋友、同事、家人,甚至是陌生人,他们的情绪似乎总能不经意间影响到我…...
25秋招面试总结
秋招从八月底开始,陆陆续续面试了不少,现在也是已经尘埃落定,在这里做一些总结一些我个人的面试经历 腾讯 腾讯是我最早面试的一家,一开始捞我面试的是数字人民币,安全方向的岗位,属于腾讯金融科技这块。…...
高斯核函数(深入浅出)
目录 定义及数学形式主要特点应用示例小结 高斯核函数(Gaussian Kernel),又称径向基核(Radial Basis Function Kernel,RBF Kernel),是机器学习与模式识别中最常用的核函数之一。它通过在高维空间…...
支付宝百宝箱 工具,快速上手制作一个agent
作品:历史上的今天-作文素材积累 Datawhale 动手学AI Agent 关键词:AI助手开发、LangGPT框架 链接:百宝箱百宝箱平台是一款可以提供一站式 AI 原生应用的开发平台,您无需具有任何代码基础,只需通过自然语言即可三步完…...
六十:HTTP/2与gRPC框架
随着互联网技术的发展,应用程序之间的通信需求日益复杂和多样化。传统的HTTP/1.x协议虽然广泛应用,但在性能和功能方面已经难以满足现代应用的需求。为了解决这些问题,HTTP/2协议和基于其之上的gRPC框架应运而生。本文将介绍HTTP/2协议的特点…...
1.RPC基本原理
文章目录 RPC1.定义2.概念3.优缺点4.RPC结构5.RPC消息协议5.1 消息边界5.2 内容5.3 压缩 6.RPC的实现6.1 divide_protocol.py6.2 server.py6.3 client.py RPC 1.定义 远程过程调用(remote procedure call) 2.概念 广义:所有通过网络进行通讯,的调用统称为RPC调用 狭义:不采…...
vue2/3,Spring Boot以及生产环境跨域解决方案
vue2和vue3跨域解决方案 Vue 2 (基于 Webpack) 的跨域解决方案 1. 创建或编辑 vue.config.js 文件 Vue CLI为Webpack项目提供了简单的代理配置方式。你可以通过创建或编辑项目的根目录下的 vue.config.js 文件来设置开发服务器的代理规则: // vue.config.js mod…...
【centos8 镜像修改】centos8 镜像修改阿里云
要将 CentOS 8 的镜像源修改为阿里云镜像,你需要编辑 /etc/yum.repos.d/ 目录下的 .repo 文件。以下是具体的步骤: 备份原始的 .repo 文件: 在编辑之前,建议备份原始的 .repo 文件,以便在出现问题时可以恢复。 sudo cp…...
多线程编程初探:掌握基本概念与核心原理
目录 1 初识线程 1.1 线程的由来 1.2 线程的产生 1.3 进程 VS 线程 1.4 关于系统内部关于线程和进程的资源调度问题 2 页表、虚拟地址和物理地址 2.1 对物理地址的描述 2.2 对于页表设计的解析 3 线程的控制 3.1 进程创建 3.1.1 pthread_create 3.2 线程退出 3.2.1 主…...
【信息系统项目管理师】第13章:项目资源管理过程详解
更多内容请见: 备考信息系统项目管理师-专栏介绍和目录 文章目录 一、规划资源管理1、输入2、工具与技术3、输出二、估算活动资源1、输入2、工具与技术3、输出三、获取资源1、输入2、工具与技术3、输出四、建设团队1、输入2、工具与技术3、输出五、管理团队1、输入2、工具与技…...
vue3封装而成的APP ,在版本更新后,页面显示空白
一、问题展示 更新之后页面空白,打不开 ,主要是由于缓存造成的 二、解决办法 1、随机数代码实现 使用随机数来动态的生成静态资源目录名可以避免浏览器缓存,但同时每次也会导致浏览器每次都下载最新的资源。如果静态资源过大,可…...
GEE云计算、多源遥感、高光谱遥感技术蓝碳储量估算;红树林植被指数计算及提取
大气温室气体浓度不断增加,导致气候变暖加剧,随之会引发一系列气象、生态和环境灾害。如何降低温室气体浓度和应对气候变化已成为全球关注的焦点。海洋是地球上最大的“碳库”,“蓝碳”即海洋活动以及海洋生物(特别是红树林、盐沼和海草&…...
【知识】cuda检测GPU是否支持P2P通信及一些注意事项
转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 代码流程 先检查所有GPU之间是否支持P2P通信;然后尝试启用GPU之间的P2P通信;再次检查所有GPU之间是否支持P2P通信。 test.cu&…...
用 Python 生成功能强大的二维码工具(支持自定义颜色与 Logo)
在很多项目中,二维码作为一种便捷的方式传递信息越来越常见。今天,我们将介绍如何用 Python 编写一个功能更全的二维码生成工具,它不仅支持自定义二维码的颜色,还能在二维码中间添加 logo。 1. 环境准备 首先,我们需…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
