当前位置: 首页 > news >正文

基于pytorch的深度学习基础3——模型创建与nn.Module

三 模型创建与nn.Module

3.1 nn.Module

模型构建两要素:

  1. 构建子模块——__init()__
  2. 拼接子模块——forward()

一个module可以有多个module;

一个module相当于一个运算,都必须实现forward函数;

每一个module有8个字典管理属性。

self._parameters = OrderedDict()

self._buffers = OrderedDict()

self._backward_hooks = OrderedDict()

self._forward_hooks = OrderedDict()

self._forward_pre_hooks = OrderedDict()

self._state_dict_hooks = OrderedDict()

self._load_state_dict_pre_hooks = OrderedDict()

self._modules = OrderedDict()

3.2 网络容器

nn.Sequential()

是nn.Module()的一个容器,用于按照顺序包装一组网络层;

顺序性:网络层之间严格按照顺序构建;

自带forward():

各网络层之间严格按顺序执行,常用于block构建

class LeNetSequential(nn.Module):

    def __init__(self, classes):

        super(LeNetSequential, self).__init__()

        self.features = nn.Sequential(

            nn.Conv2d(3, 6, 5),

            nn.ReLU(),

            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(6, 16, 5),

            nn.ReLU(),

            nn.MaxPool2d(kernel_size=2, stride=2),)

        self.classifier = nn.Sequential(

            nn.Linear(16*5*5, 120),

            nn.ReLU(),

            nn.Linear(120, 84),

            nn.ReLU(),

            nn.Linear(84, classes),)

    def forward(self, x):

        x = self.features(x)

        x = x.view(x.size()[0], -1)

        x = self.classifier(x)

        return x

nn.ModuleList()

是nn.Module的容器,用于包装网络层,以迭代方式调用网络层。

主要方法:

append():在ModuleList后面添加网络层;

extend():拼接两个ModuleList.

Insert():指定在ModuleList中插入网络层。

nn.ModuleList:迭代性,常用于大量重复网构建,通过for循环实现重复构建

class ModuleList(nn.Module):

    def __init__(self):

        super(ModuleList, self).__init__()

        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(20)])

    def forward(self, x):

        for i, linear in enumerate(self.linears):

            x = linear(x)

        return x

nn.ModuleDict()

以索引方式调用网络层

主要方法:

• clear():清空ModuleDict

• items():返回可迭代的键值对(key-value pairs)

• keys():返回字典的键(key)

• values():返回字典的值(value)

• pop():返回一对键值,并从字典中删除

n.ModuleDict:索引性,常用于可选择的网络层

class ModuleDict(nn.Module):

    def __init__(self):

        super(ModuleDict, self).__init__()

        self.choices = nn.ModuleDict({

            'conv': nn.Conv2d(10, 10, 3),

            'pool': nn.MaxPool2d(3)

        })

        self.activations = nn.ModuleDict({

            'relu': nn.ReLU(),

            'prelu': nn.PReLU()

        })

    def forward(self, x, choice, act):

        x = self.choices[choice](x)

        x = self.activations[act](x)

        return x

3.3卷积层

nn.ConV2d()

nn.Conv2d(in_channels, out_channels,kernel_size, stride=1,padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

in_channels:输入通道数,比如RGB图像是3,而后续的网络层的输入通道数为前一卷积层的输出通道数;

out_channels:输出通道数,等价于卷积核个数

kernel_size:卷积核尺寸

stride:步

padding:填充个数

dilation:空洞卷积大小

groups:分组卷积设置

bias:偏置

    conv_layer = nn.Conv2d(3, 1, 3)   # input:(i, o, size) weights:(o, i , h, w)

    nn.init.xavier_normal_(conv_layer.weight.data)

    # calculation

    img_conv = conv_layer(img_tensor)

这里使用 input*channel 为 3,output_channel 为 1 ,卷积核大小为 3×3 的卷积核nn.Conv2d(3, 1, 3),使用nn.init.xavier_normal*()方法初始化网络的权值。

我们通过`conv_layer.weight.shape`查看卷积核的 shape 是`(1, 3, 3, 3)`,对应是`(output_channel, input_channel, kernel_size, kernel_size)`。所以第一个维度对应的是卷积核的个数,每个卷积核都是`(3,3,3)`。虽然每个卷积核都是 3 维的,执行的却是 2 维卷积。

转置卷积nn.ConvTranspose2d

转置卷积又称为反卷积(Deconvolution)和部分跨越卷积(Fractionally-stridedConvolution) ,用于对图像进行上采样(UpSample)

为什么称为转置卷积?

假设图像尺寸为4*4,卷积核为3*3,padding=0,stride=1

正常卷积:

转置卷积:

假设图像尺寸为2*2,卷积核为3*3,padding=0,stride=1

nn.ConvTranspose2d(in_channels, out_channels,

kernel_size,

stride=1,

padding=0,

output_padding=0,

groups=1,

bias=True,

dilation=1, padding_mode='zeros')

输出尺寸计算:

# flag = 1

flag = 0

if flag:

    conv_layer = nn.ConvTranspose2d(3, 1, 3, stride=2)   # input:(i, o, size)

    nn.init.xavier_normal_(conv_layer.weight.data)

    # calculation

    img_conv = conv_layer(img_tensor)

print("卷积前尺寸:{}\n卷积后尺寸:{}".format(img_tensor.shape, img_conv.shape))

img_conv = transform_invert(img_conv[0, 0:1, ...], img_transform)

img_raw = transform_invert(img_tensor.squeeze(), img_transform)

plt.subplot(122).imshow(img_conv, cmap='gray')

plt.subplot(121).imshow(img_raw)

plt.show()

3.4池化层nn.MaxPool2d && nn.AvgPool2d

池化运算:对信号进行 “收集”并 “总结”,类似水池收集水资源,因而

得名池化层

“收集”:多变少

“总结”:最大值/平均值

nn.MaxPool2d

nn.MaxPool2d(kernel_size, stride=None,

padding=0, dilation=1,

return_indices=False,

ceil_mode=False)

主要参数:

• kernel_size:池化核尺寸

• stride:步长

• padding :填充个数

• dilation:池化核间隔大小

• ceil_mode:尺寸向上取整

• return_indices:记录池化像素索引

# flag = 1

flag = 0

if flag:

    maxpool_layer = nn.MaxPool2d((2, 2), stride=(2, 2))   # input:(i, o, size) weights:(o, i , h, w)

    img_pool = maxpool_layer(img_tensor)

nn.AvgPool2d

nn.AvgPool2d(kernel_size,

stride=None,

padding=0,

ceil_mode=False,

count_include_pad=True,

divisor_override=None)

主要参数:

• kernel_size:池化核尺寸

• stride:步长

• padding :填充个数

• ceil_mode:尺寸向上取整

• count_include_pad:填充值用于计算

• divisor_override :除法因子

    avgpoollayer = nn.AvgPool2d((2, 2), stride=(2, 2))   # input:(i, o, size) weights:(o, i , h, w)

    img_pool = avgpoollayer(img_tensor)

    img_tensor = torch.ones((1, 1, 4, 4))

    avgpool_layer = nn.AvgPool2d((2, 2), stride=(2, 2), divisor_override=3)

    img_pool = avgpool_layer(img_tensor)

    print("raw_img:\n{}\npooling_img:\n{}".format(img_tensor, img_pool))

nn.MaxUnpool2d

功能:对二维信号(图像)进行最大值池化

上采样

主要参数:

• kernel_size:池化核尺寸

• stride:步长

• padding :填充个数

    # pooling

    img_tensor = torch.randint(high=5, size=(1, 1, 4, 4), dtype=torch.float)

    maxpool_layer = nn.MaxPool2d((2, 2), stride=(2, 2), return_indices=True)

    img_pool, indices = maxpool_layer(img_tensor)

    # unpooling

    img_reconstruct = torch.randn_like(img_pool, dtype=torch.float)

    maxunpool_layer = nn.MaxUnpool2d((2, 2), stride=(2, 2))

    img_unpool = maxunpool_layer(img_reconstruct, indices)

    print("raw_img:\n{}\nimg_pool:\n{}".format(img_tensor, img_pool))

    print("img_reconstruct:\n{}\nimg_unpool:\n{}".format(img_reconstruct, img_unpool))

3.5线性层

nn.Linear(in_features, out_features, bias=True)

功能:对一维信号(向量)进行线性组合

主要参数:

• in_features:输入结点数

• out_features:输出结点数

• bias :是否需要偏置

计算公式:y = 𝒙𝑾𝑻 + 𝒃𝒊𝒂s

    inputs = torch.tensor([[1., 2, 3]])

    linear_layer = nn.Linear(3, 4)

    linear_layer.weight.data = torch.tensor([[1., 1., 1.],

                                             [2., 2., 2.],

                                             [3., 3., 3.],

                                             [4., 4., 4.]])

    linear_layer.bias.data.fill_(0.5)

    output = linear_layer(inputs)

    print(inputs, inputs.shape)

    print(linear_layer.weight.data, linear_layer.weight.data.shape)

    print(output, output.shape)

3.6 激活函数层

nn.Sigmoid

nn.tanh:

nn.ReLU

nn.LeakyReLU

negative_slope: 负半轴斜率

nn.PReLU

init: 可学习斜率

nn.RReLU

lower: 均匀分布下限

upper:均匀分布上限

参考资料

深度之眼课程

相关文章:

基于pytorch的深度学习基础3——模型创建与nn.Module

三 模型创建与nn.Module 3.1 nn.Module 模型构建两要素: 构建子模块——__init()__拼接子模块——forward() 一个module可以有多个module; 一个module相当于一个运算,都必须实现forward函数; 每一个mod…...

Debian-linux运维-docker安装和配置

腾讯云搭建docker官方文档:https://cloud.tencent.com/document/product/213/46000 阿里云安装Docker官方文档:https://help.aliyun.com/zh/ecs/use-cases/install-and-use-docker-on-a-linux-ecs-instance 天翼云常见docker源配置指导:htt…...

Docker完整技术汇总

Docker 背景引入 在实际开发过程中有三个环境,分别是:开发环境、测试环境以及生产环境,假设开发环境中开发人员用的是jdk8,而在测试环境中测试人员用的时jdk7,这就导致程序员开发完系统后将其打成jar包发给测试人员后…...

在JavaScript文件中定义方法和数据(不是在对象里定以数据和方法,不要搞错了)

在对象里定以数据和方法看这一篇 对象字面量内定义属性和方法(什么使用const等关键字,什么时候用键值对)-CSDN博客https://blog.csdn.net/m0_62961212/article/details/144788665 下是在JavaScript文件中定义方法和数据的基本方式&#xff…...

python爬虫爬抖音小店商品数据+数据可视化

爬虫代码 爬虫代码是我调用的数据接口,可能会过一段时间用不了,欢迎大家留言评论,我会不定时更新 import requests import time cookies {token: 5549EB98B15E411DA0BD05935C0F225F,tfstk: g1vopsc0sQ5SwD8TyEWSTmONZ3cA2u6CReedJ9QEgZ7byz…...

关于 覆铜与导线之间间距较小需要增加间距 的解决方法

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/144776995 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…...

uniapp中Nvue白屏问题 ReferenceError: require is not defined

uniapp控制台输出如下 exception function:createInstanceContext, exception:white screen cause create instanceContext failed,check js stack ->Uncaught ReferenceError: require is not defined 或者 exception function:createInstanceContext, exception:white s…...

在 Windows 上,如果忘记了 MySQL 密码 重置密码

在 Windows 上,如果忘记了 MySQL 密码,可以通过以下方法重置密码: 方法 1:以跳过权限验证模式启动 MySQL 并重置密码 停止 MySQL 服务: 打开 命令提示符 或 PowerShell,输入以下命令停止 MySQL 服务&#…...

《PyTorch:从基础概念到实战应用》

《PyTorch:从基础概念到实战应用》 一、PyTorch 初印象二、PyTorch 之历史溯源三、PyTorch 核心优势尽显(一)简洁高效,契合思维(二)易于上手,调试便捷(三)社区繁荣&#…...

前端:改变鼠标点击物体的颜色

需求&#xff1a; 需要改变图片中某一物体的颜色&#xff0c;该物体是纯色&#xff1b; 鼠标点击哪个物体&#xff0c;哪个物体的颜色变为指定的颜色&#xff0c;利用canvas实现。 演示案例 代码Demo <!DOCTYPE html> <html lang"en"><head>&l…...

Java-33 深入浅出 Spring - FactoryBean 和 BeanFactory BeanPostProcessor

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 大数据篇正在更新&#xff01;https://blog.csdn.net/w776341482/category_12713819.html 目前已经更新到了&#xff1a; MyBatis&#xff…...

HTML4笔记

尚硅谷 一、前序知识 1.认识两位先驱 2.计算机基础知识 3.C/S架构与B/S架构 4.浏览器相关知识 5.网页相关概念 二、HTML简介 1.什么是HTML? 2.相关国际组织(了解) 3.HTML发展历史(了解)** 三、准备工作 1.常用电脑设置 2.安装Chrome浏览器 四、HTML入门 1.HTML初体验 2.H…...

python报错ModuleNotFoundError: No module named ‘visdom‘

在用虚拟环境跑深度学习代码时&#xff0c;新建的环境一般会缺少一些库&#xff0c;而一般解决的方法就是直接conda install&#xff0c;但是我在conda install visdom之后&#xff0c;安装是没有任何报错的&#xff0c;conda list里面也有visdom的信息&#xff0c;但是再运行代…...

linux-21 目录管理(一)mkdir命令,创建空目录

对linux而言&#xff0c;对一个系统管理来讲&#xff0c;最关键的还是文件管理。那所以我们接下来就来看看如何实现文件管理。当然&#xff0c;在文件管理之前&#xff0c;我们说过&#xff0c;文件通常都放在目录下&#xff0c;对吧&#xff1f;所以先了解目录&#xff0c;可能…...

总结-常见缓存替换算法

缓存替换算法 1. 总结 1. 总结 常见的缓存替换算法除了FIFO、LRU和LFU还有下面几种&#xff1a; 算法优点缺点适用场景FIFO简单实现可能移除重要数据嵌入式系统&#xff0c;简单场景LRU局部性原理良好维护成本高&#xff0c;占用更多存储空间内存管理&#xff0c;浏览器缓存L…...

【Vue】如何在 Vue 3 中使用组合式 API 与 Vuex 进行状态管理的详细教程

如何在 Vue 3 中使用组合式 API 与 Vuex 进行状态管理的详细教程。 安装 Vuex 首先&#xff0c;在你的 Vue 3 项目中安装 Vuex。可以使用 npm 或 yarn&#xff1a; npm install vuexnext --save # or yarn add vuexnext创建 Store 在 Vue 3 中&#xff0c;你可以使用 creat…...

VSCode 插件开发实战(十五):如何支持多语言

前言 在软件开发中&#xff0c;多语言支持&#xff08;i18n&#xff09;是一个非常重要的功能。无论是桌面应用、移动应用&#xff0c;还是浏览器插件&#xff0c;都需要考虑如何支持不同国家和地区的用户&#xff0c;软件应用的多语言支持&#xff08;i18n&#xff09;已经成…...

面试241228

面试可参考 1、cas的概念 2、AQS的概念 3、redis的数据结构 使用场景 不熟 4、redis list 扩容流程 5、dubbo 怎么进行服务注册和调用&#xff0c;6、dubbo 预热 7如何解决cos上传的安全问题kafka的高并发高吞吐的原因ES倒排索引的原理 spring的 bean的 二级缓存和三级缓存 spr…...

​Python数据序列化模块pickle使用

pickle 是 Python 的一个标准库模块&#xff0c;它实现了基本的对象序列化和反序列化。序列化是指将对象转换为字节流的过程&#xff0c;这样对象就可以被保存到文件中或通过网络传输。反序列化是指从字节流中恢复对象的过程。 以下是 pickle 模块的基本使用方法&#xff1a; …...

Spring Boot对访问密钥加解密——HMAC-SHA256

HMAC-SHA256 简介 HMAC-SHA256 是一种基于 哈希函数 的消息认证码&#xff08;Message Authentication Code, MAC&#xff09;&#xff0c;它结合了哈希算法&#xff08;如 SHA-256&#xff09;和一个密钥&#xff0c;用于验证消息的完整性和真实性。 HMAC 是 “Hash-based M…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...