当前位置: 首页 > news >正文

模型工作流:自动化的模型内部三角面剔除

1. 关于自动减面

1.1 自动减面的重要性及现状

三维模型是游戏、三维家居设计、数字孪生、VR/AR等几乎所有三维软件的核心资产,模型的质量和性能从根本上决定了三维软件的画面效果和渲染性能。其中,模型减面工作是同时关乎质量和性能这两个要素的重要工作,一个好的模型减面结果,既能保证模型的渲染品质不会过多降低,又能保证模型面数降到一个合理可用的范围。

但三维模型的减面工作需要耗费大量的人力成本,通常一个模型的减面工作根据模型的复杂程度不同,需要耗费0.5到1人/天的成本,如果模型特别复杂,这个时间还会增加。因此,自动化减面工具的引入能极大提升建模人员的工作效率。

1.2 自动减面的挑战

现有的自动化减面工具,基本上都是基于在1997年发布的《Surface Simplification Using Quadric Error Metrics》(下称QEM算法)这篇论文的实现,比如当前游戏行业最流行的工具 PolygonCruncher 就是基于该论文实现的。该工具能够在保证模型拓扑形状的同时进行减面,最终减面的比例会跟该工具的设定有关,其中轮廓保护程度、纹理坐标保护程度、边角保护程度等等都会影响最终的减面比例,在我们家电场景的实际使用过程中,根据使用经验,一个能保持较高品质的减面比例通常在50%左右,这对于动辄十几万甚至上百万的模型来说,是远远达不到安全可用的要求的。

1.3 QEM算法的开创性和局限性

减面工作本质上是一个基于视觉系统和逻辑判断的事情,建模人员需要通过人眼去观察模型的三角面,并据其与模型的遮挡关系,在脑中判断出这个三角面是否可见,或者说是否应该被剔除掉。所以,想要实现自动减面,要么想办法摆脱对视觉系统的依赖,要么想办法实现一套视觉系统。而QEM算法的思路就是前者。

QEM算法创造性的通过计算出三角网格中每个边的一个特殊度量指标——二次误差,以该指标作为一个三角面是否应该减去的依据,从而绕过了视觉系统,仅通过三维数据的数据计算即可完成减面工作。具体来说,一条边的二次误差越大代表其对该局部区域拓扑结构的影响就越大,就越应该保留下来,反之就越应该减去。

但是QEM算法并非无懈可击,由于不依赖视觉系统,它只能根据对拓扑结构的影响程度来选择要减去的三角面,无法进一步根据三角面的可见性情况进行模型内部三角面的剔除。这也是QEM算法在家电模型减面的场景下表现不佳的根本原因。

关于QEM算法的具体原理,可以查看另一篇文章:《模型工作流:模型减面原理分析及优化思路》

1.4 如何破局

因此,我们可以通过引入模拟的视觉系统,来实现模型内部三角面的识别和剔除,从而让模型能在QEM减面的基础上,进一步的将内部三角面减去,从而实现更高效的减面效率。实现的效果如下图所示:

一个拓扑结构比较复杂的例子

2. 基于深度测试的减面

从生物学上来看,人眼最重要的两个能力是色彩识别、深度识别,其中深度识别就是指大脑能根据两个眼睛的“摄像”结果推断出视网膜中某个“像素点”的空间位置的深度关系。同样,对于减面工作来说,我们需要借助眼睛来判断一个三角面到底是暴露在外部,还是被遮挡在内部,其本质上就是判断两个像素点的深度关系。那么,只要在程序中获取到每个三角面的深度关系,那么我们就能识别出那些三角面是被遮挡的,其基本思路如下:

2.1 基本思路

物体的深度是跟人眼的位置和方向有关的,我们会引入若干个虚拟相机,将它们环绕摆放在模型四周,依次来模拟人眼观察的效果。根据模型的实际使用形态不同,相机的摆放可以灵活设定,一般设置8个朝下看+8个朝上看相机足够应对大部分情况,如下图所示。

在这之后,每个相机会进行拍摄,拍摄的内容是“整个模型”的三角面光栅化后的深度值,以下是其中3个相机的拍摄内容。这样,我们就能从图片中获取到每个像素点位置的深度值,对应的就是该像素位置下的模型表面的深度,也就是d2。

相机1

相机2

相机3

然后,我们需要在程序中,通过空间计算,获取每个三角形的在上述每个相机下的深度值,记为d1。这样,我们依次遍历模型的每一个三角形,计算每个三角形的d1和d2的大小关系,如果d1 > d2,则代表这个三角形的深度比模型表面更深,那么就意味着这个三角形在当前相机位置下是不可见的,如下图所示:

注意,d1的获取我们不能使用光栅化来完成,因为面的数量过大,此时CPU的效率远比GPU一个一个渲染FrameBuffer要高很多。

然后我们每个相机都重复上述操作,记录下每个相机的不可见的三角形的集合,最终把所有这些集合进行一个“取交集”的操作,就能得到在所有相机下都不可见的三角形,这样我们后续就能安全的进行内部三角面的剔除了,伪代码如下:

// 伪代码
-- 遍历每一个相机
for camera in cameras:-- 拍摄该相机下的整个模型的深度图wholeObjectDepthMap = renderCameraDepthMap camera wholeObject-- 遍历改模型的所有物体for obj in allObjects:-- 遍历该物体的所有三角面for face in obj.faces:-- 采样该面的关键点faceSamplePoints = sampleFacePoints face-- 遍历这些关键点for point in faceSamplePoints:-- 计算关键点的NDC坐标ndc = worldToNDCCoord point-- 计算关键点的UV坐标uv = NDCToUVCoord ndc-- 使用UV坐标采样深度图的颜色color = readPixel wholeObjectDepthMap uv-- 颜色值转深度值,即是d2d2 = (1.0 - color/255.0)-- ndc坐标系的z值就是d1(根据图形学理论)d1 = ndc.z-- 如果d1的深度大于d2的深度,那么就代表d1所在的关键点不可见if d1 > d2:-- 该三角面的、该点,不可见

2.2 一些优化点

2.2.1 深度精度优化

为了尽可能提升深度值的精度,我们需要把相机视锥参数调整到“恰好包裹起整个物体”的状态,这样才能尽可能的减少相机的near平面和far平面的距离,以此来提升深度精度。

注意,这里我们使用正交投影相机,视锥在程序内部是一个长方体(如图中白色虚线所示),而不是锥形。

2.2.2 三角面关键点

考虑到一个三角面被遮挡的情况千奇百怪,比如可能中间被遮挡边角露出,也可能反过来。因此对三角面的关键点选取数量越多,我们的判断精度就越高。但是三角面数量越多,我们的计算耗时就越大,这需要权衡。经过实践,在三角形的边角和中心区域共6个点可以应对绝大部分情况。

2.2.3 预剔除

有一些物体它本身已经完全隐藏在另一个物体内部,此时这个物体其实可以整个抛弃,没必要再判断每个三角形的可见情况。实现思路也很简单,除了拍摄整个模型的深度图,然后每个物体也拍一个深度图。

伪代码如下:

// 伪代码
-- 遍历每一个相机
for camera in cameras:-- 拍摄该相机下的整个模型的深度图wholeObjectDepthMap = renderCameraDepthMap camera wholeObject-- 遍历改模型的所有物体for obj in allObjects:-- 拍摄该相机下的“单个物体”的深度图objectDepthMap = renderCameraDepthMap camera obj objectBBoxWorld = getObjBBox objobjectNDCRange = worldToNDCRange objectBBoxWorld -- 获取UV的坐标范围,如上图红框所示objectUVRange = NDCToUVRange objectNDCRange-- 遍历两张图在该坐标范围内的像素颜色,进行深度值的判断for u in objectUVRange.rows:for v in objectUVRange.cols:color2 = readPixel wholeObjectDepthMap uvcolor1 = readPixel objectDepthMap uvd2 = (1.0 - color2/255.0)d1 = (1.0 - color1/255.0)if d1 > d2:-- continueelse-- exit 有一个像素可见,那么整个物体都可见,直接退出循环

2.3 自动减面效果测试

基于深度测试的减面方法是通用的,因此对于各种品类的家电家具模型都有非常好的效果,相比于传统的基于QEM算法的减面方案,减面效率得到了巨大的提升。

品类

产品

原始面数

纯QEM算法方案

深度测试方案(配合QEM减面)

电饭煲

HRC-FS4042A-FN01D0028

3.3w

1.1w

减面比例:66%

0.52w

减面比例:84%

电水壶

FM00E0000

9.2w

2.8w

减面比例:69%

0.74w

减面比例:92%

吸油烟机

海尔-家用-吸油烟机-CXW-258-EC967U1

12w

7.5w

减面比例:36%

0.83w

减面比例:93%

净水器

卡萨帝-反渗透-净水机-600G-CRO600-DFBGU1

15w

9.6w

减面比例:36%

1w

减面比例:93%

用水

圆镀铬龙头HJ2107

12.5w

8.4w

减面比例:33%

0.5w

减面比例:96%

智能浴霸

海尔-智能浴霸-X3U1

12.6w

7.2w

减面比例:43%

0.78w

减面比例:93%

热水器

卡萨帝-电热-热水器-80L-CES80H-PROS3CEK02U1

39w

21w

减面比例:46%

2.9w

减面比例:92%

洗衣机

海尔-滚筒-洗衣机-10kg-G100318B14LS

59w

43w

减面比例:27%

10w

减面比例:83%

电视

卡萨帝-液晶电视机-K85E10

62w

56w

减面比例:9%

13w

减面比例:79%

壁挂空调

海尔-挂机-空调室内机-2匹-KFR-50GW18MEA83U1套机

66w

59w

减面比例:10%

2.7w

减面比例:96%

柜式空调

海尔-柜机-空调室内机-大3匹-KFR-72LW17DAA81VU1

79w

63w

减面比例:20%

11w

减面比例:86%

冰箱

卡萨帝-多开门-电冰箱-550L-BCD-550WLCFPA4YBU1

150w

70w

减面比例:53%

17w

减面比例:89%

3. 团队介绍

三翼鸟数字化技术平台-筑巢自研平台」依托实体建模技术与人工智能技术打造面向家电的智能设计平台,为海尔特色的成套家电和智慧场景提供可视可触的虚拟现实体验。智慧设计团队提供全链路设计,涵盖概念化设计、深化设计、智能仿真、快速报价、模拟施工、快速出图、交易交付、设备检修等关键环节,为全屋家电设计提供一站式解决方案。

相关文章:

模型工作流:自动化的模型内部三角面剔除

1. 关于自动减面 1.1 自动减面的重要性及现状 三维模型是游戏、三维家居设计、数字孪生、VR/AR等几乎所有三维软件的核心资产,模型的质量和性能从根本上决定了三维软件的画面效果和渲染性能。其中,模型减面工作是同时关乎质量和性能这两个要素的重要工…...

解读一个新建的 Spring Boot 项目

解读一个新建的 Spring Boot 项目。 1. 创建 Spring Boot 2.5.6 项目 步骤 1: 使用 Spring Initializr 创建项目 可以使用 Spring Initializr(https://start.spring.io/)来快速生成一个 Spring Boot 项目。 在 Spring Initializr 中选择以下配置&…...

Vue多页面路由与模版解析

上篇文章中我们成功打包并输出了多页文件,而构建一个多页应用能够让我们进一步了解项目配置的可拓展性,可以对学习 Vue 和 webpack 起到强化训练的效果,本文将在此基础上主要针对多页路由及模板的配置进行系列的介绍。 本案例代码地址&#…...

Python爬虫(二)- Requests 高级使用教程

文章目录 前言一、Session 对象1. 简介2. 跨请求保持 Cookie3. 设置缺省数据4. 方法级别参数不被跨请求保持5. 会话作为上下文管理器6. 移除字典参数中的值 二、请求与响应1. 请求与响应对象1.1 获取响应头信息1.2 获取发送到服务器的请求头信息 三、SSL 证书验证1. 忽略 SSL 证…...

并联带阻滤波器带通滤波器对幅值和相位的影响(IIR)

一、背景 输入信号input分别经过bp(带通滤波器)和bs(带阻滤波器)处理后相加输出。分析输出信号的幅值和相位受到的影响。 根据上图公式推导可知,并联滤波器对输出的影响可以直接分析,带通滤波器与带阻滤波器在频域上的加和。 二、…...

攻防世界web新手第五题supersqli

这是题目,题目看起来像是sql注入的题,先试一下最常规的,输入1,回显正常 输入1‘,显示错误 尝试加上注释符号#或者–或者%23(注释掉后面语句,使1后面的单引号与前面的单引号成功匹配就不会报错…...

vue3学习笔记(10)-$subscribe,store组合式写法

1.$subscribe订阅,监视vuex中数据得修改 2.localStorage里面穿的都是字符串,关掉浏览器数据还在 只能获取字符串,用ts语法写明,作为字符串使用 3.组合式写法...

操作系统论文导读(八):Schedulability analysis of sporadic tasks with multiple criticality specifications——具有多个

Schedulability analysis of sporadic tasks with multiple criticality specifications——具有多个关键性规范的零星任务的可调度性分析 目录 一、论文核心思想 二、基本定义 2.1 关键性指标 2.2 任务及相关参数定义 2.3 几个基础定义 三、可调度性分析 3.1 调度算法分…...

计算机网络与通信复习

因特网的核心部分(电路交换与分组交换的不同点,分组交换的优点) 核心部分:路由器、交换机 我们假如数据就是一个货物,比如说一千公斤的大米,电路交换要有专用通道,不管从起点到终点经过多少个…...

【Scala】图书项目系统代码演练3.1/BookService

package org.app package serviceimport models.{BookModel, BorrowRecordModel}import org.app.dao.{BookDAO, BorrowRecordDAO}import java.time.LocalDateTime import scala.collection.mutable.ListBuffer// 图书业务逻辑层 class BookService {private val bookDAO new B…...

人工智能基础软件-Jupyter Notebook

简介: Jupyter Notebook是基于网页的用于交互计算的应用程序。其可被应用于全过程计算:开发、文档编写、运行代码和展示结果。 Jupyter Notebook是以网页的形式打开,可以在网页页面中直接编写代码和运行代码,代码的运行结果也会直…...

C++ 设计模式:模板方法(Template Method)

链接:C 设计模式 链接:C 设计模式 - 策略模式 链接:C 设计模式 - 观察者模式 模板方法(Template Method)是一种行为设计模式,它定义了一个操作中的算法的骨架,而将一些步骤延迟到子类中。通过这…...

GDPU Vue前端框架开发 跨年大礼包

目录 选择题 填空题 简答题 记住,年底陪你跨年的不会仅是方便面跟你的闺蜜,还有孑的笔记。 选择题 1.下列选项用于设置Vue.js页面视图的元素是()。 A. Template B. script C. style D. title 2.下列选项中能够定义Vuejs根…...

搭建一个高效且安全的APP分发平台

搭建一个高效且安全的APP分发平台需要经历一系列精心规划和实施的步骤。以下是一个详细的指南,涵盖从准备阶段到后续维护阶段的各个环节: 一、准备阶段 明确目标与需求 确定平台的目标用户群体,了解他们的需求和偏好。分析竞争对手的分发平台…...

Leetcode打卡:二叉树中的链表

执行结果:通过 题目 1367 二叉树中的链表 给你一棵以 root 为根的二叉树和一个 head 为第一个节点的链表。 如果在二叉树中,存在一条一直向下的路径,且每个点的数值恰好一一对应以 head 为首的链表中每个节点的值,那么请你返回 …...

大数据技术-Hadoop(四)Yarn的介绍与使用

目录 一、Yarn 基本结构 1、Yarn基本结构 2、Yarn的工作机制 二、Yarn常用的命令 三、调度器 1、Capacity Scheduler(容量调度器) 1.1、特点 1.2、配置 1.2.1、yarn-site.xml 1.2.2、capacity-scheduler.xml 1.3、重启yarn、刷新队列 测试 向hi…...

算法 class 004(选择,冒泡,插入)

选择排序&#xff1a; 刚进入 j 循环的样子 j 跳出循环后&#xff0c;b 指向最小值的坐标 然后交换 i 和 b 位置的 值 随后 i , b i , i j1; 开始新一轮的排序&#xff0c; void SelectAQort(int* arr,int size)//选择排序 {for (int i 0; i < size-1; i){ //i 的位置就是…...

linux---awk命令详细教程

awk是一种强大的编程语言&#xff0c;用于在Linux/Unix系统下对文本和数据进行处理。以下是对awk的详细教程&#xff1a; 一、awk简介 awk由Alfred Aho、Brian Kernighan和Peter Weinberger三人开发&#xff0c;其名称分别代表这三位作者姓氏的第一个字母。awk支持用户自定义…...

一个通用的居于 OAuth2的API集成方案

在现代 web 应用程序中&#xff0c;OAuth 协议是授权和认证的主流选择。为了与多个授权提供商进行无缝对接&#xff0c;我们需要一个易于扩展和维护的 OAuth 解决方案。本文将介绍如何构建一个灵活的、支持多提供商的 OAuth 系统&#xff0c;包括动态 API 调用、路径参数替换、…...

STM32配合可编程加密芯片SMEC88ST的防抄板加密方案设计

SMEC88ST SDK开发包下载 目前市场上很多嵌入式产品方案都是可以破解复制的&#xff0c;主要是因为方案主芯片不具备防破解的功能&#xff0c;这就导致开发者投入大量精力、财力开发的新产品一上市就被别人复制&#xff0c;到市场上的只能以价格竞争&#xff0c;最后工厂复制的产…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...