【深度学习】时间序列表示方法
自然界除了2D的图片数据之外,还有语音、文字,这些数据都有时间的先后顺序的。对于2D的图像的数据,可以用RGB值来表示像素的色彩度。语音可以用信号幅度值来表示,而Pytorch没有自带String支持,在表示文字之前需要进行Embedding。
没有String类型,采用embedding来进行表示——[seq_len, feature_len],第一个维度表示序列的长度(即单词的个数),第二个维度表示进行维度表示所需要的维度数。如[5, 1],表示一句话有5个单词,每个单词都用长度为1的向量进行表示;[5, 100],表示一句话有5个单词,每个单词都用长度为100的向量进行表示。[seq_len, feature_len]针对不同的用户场景有着不同的含义,看以下曲线——房价随月份的变化,[100,1]中的第一个维度表示的是月份,第二个维度表示的是表示该月份的房价用长度为1的向量进行表示。
文本信息的表达方式为[words, word_vec],第一个维度是单词数量,第二个维度区间于编码方式。编码方式可以采用独热编码。
one-hot编码非常系数,维度非常高,并且语言具有语义相关性(semantic similarity,通过计算余弦相似性),可以采用另外一种编码方式,本质上是对one-hot编码后的语义空间进行降维——word2vec(一种不存在激活函数的神经网络,相当于编词典)。
跟处理图片一样,处理序列也可以取几batch进行一起处理,这时候张量表示存在两种方式——[word_num, b, word_vec] 和 [b, word_num, word_vec]。
word_to_ix = {"hello":0, "world":1}lookup_tensor = torch.tensor([word_to_ix["hello"]], dtype=torch.long)
# 2 words in vacab, 5 dimensional embeddings
embeds = nn.Embedding(2, 5)
hello_embed = embeds(lookup_tensor)
print(hello_embed)
tensor([[0.6614, 0.2669, 0.0617, 0.6213, -0.4519]], grad_fn=<EmbeddingBackward>)
直接使用GloVe方式(编码方式),直接输入单词既可以得到单词对应的向量。
from torchnlp.word_to_vector import GloVe
vectors = GloVe()vectors['hello']
相关文章:

【深度学习】时间序列表示方法
自然界除了2D的图片数据之外,还有语音、文字,这些数据都有时间的先后顺序的。对于2D的图像的数据,可以用RGB值来表示像素的色彩度。语音可以用信号幅度值来表示,而Pytorch没有自带String支持,在表示文字之前需要进行Em…...

1.微服务灰度发布落地实践(方案设计)
文章目录 前言灰度发布的优点设计概要系统架构图流量控制客户端服务端 路由路径应用客户端实现核心组件分析1.网关2. spring-cloud3. dubbo4. nocas5. thread6. message queue 前言 微服务架构中的灰度发布(也称为金丝雀发布或渐进式发布)是一种在不影响…...

【UE5 C++课程系列笔记】15——Assert的基本使用
目录 概念 一、Check 二、Verify 三、Ensure 对比 基本使用 一、check的基本使用 二、ensure的基本使用 三、verify的基本使用 概念 assert 可在开发期间帮助检测和诊断不正常或无效的运行时条件。这些条件通常检查是否指针为非空、除数为非零、函数并非递归运行&…...

kubernetes Gateway API-1-部署和基础配置
文章目录 1 部署2 最简单的 Gateway3 基于主机名和请求头4 重定向 Redirects4.1 HTTP-to-HTTPS 重定向4.2 路径重定向4.2.1 ReplaceFullPath 替换完整路径4.2.2 ReplacePrefixMatch 替换路径前缀5 重写 Rewrites5.1 重写 主机名5.2 重写 路径5.2.1 重新完整路径5.2.1 重新部分路…...

likeAdmin架构部署(踩坑后的部署流程
1、gitee下载 https://gitee.com/likeadmin/likeadmin_java.git 自己克隆 2、项目注意 Maven:>3.8 ❤️.9 (最好不要3.9已经试过失败 node :node14 (不能是18 已经测试过包打不上去使用14的换源即可 JDK:JDK8 node 需要换源 npm c…...

【一款超好用的开源笔记Logseq本地Docker部署与远程使用指南】
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
浅谈torch.utils.data.TensorDataset和torch.utils.data.DataLoader
1.torch.utils.data.TensorDataset 功能定位 torch.utils.data.TensorDataset 是一个将多个张量(Tensor)数据进行简单包装整合的数据集类,它主要的作用是将相关联的数据(比如特征数据和对应的标签数据等)组合在一起&…...

gesp(C++二级)(16)洛谷:B4037:[GESP202409 二级] 小杨的 N 字矩阵
gesp(C++二级)(16)洛谷:B4037:[GESP202409 二级] 小杨的 N 字矩阵 题目描述 小杨想要构造一个 m m m \times m m...

FFmpeg:详细安装教程与环境配置指南
FFmpeg 部署完整教程 在本篇博客中,我们将详细介绍如何下载并安装 FFmpeg,并将其添加到系统的环境变量中,以便在终端或命令行工具中直接调用。无论你是新手还是有一定基础的用户,这篇教程都能帮助你轻松完成 FFmpeg 的部署。 一、…...
《特征工程:自动化浪潮下的坚守与变革》
在机器学习的广阔天地中,特征工程一直占据着举足轻重的地位。它宛如一位幕后的工匠,精心雕琢着原始数据,将其转化为能够被机器学习模型高效利用的特征,从而推动模型性能迈向新的高度。然而,随着技术的飞速发展…...

webrtc 源码阅读 make_ref_counted模板函数用法
目录 1. 模板参数解析 1.1 typename T 1.2 typename... Args 1.3 typename std::enable_if::value, T>::type* nullptr 2. scoped_refptr 3. new RefCountedObject(std::forward(args)...); 4. 综合说明 5.在webrtc中的用法 5.1 peerConnectionFactory对象的构建过…...
【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征的?附代码
【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征的?附代码 【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征…...
【Docker】离线安装 Docker
离线安装 Docker 在CentOS系统上安装Docker 1、下载 Docker 仓库文件 https://download.docker.com/linux/centos/docker-ce.repo 2、添加 Docker 仓库文件 将上一步下载的文件,移动到 /etc/yum.repos.d/ 目录 3、清除 YUM 缓存 sudo yum clean all sudo yum…...

三大行业案例:AI大模型+Agent实践全景
本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”&a…...

Dockerfile基础指令
1.FROM 基于基准镜像(建议使用官方提供的镜像作为基准镜像,相对安全一些) 举例: 制作基准镜像(基于centos:lastest) FROM cenots 不依赖于任何基准镜像 FROM scratch 依赖于9.0.22版本的tomcat镜像 FROM…...

12.30 linux 文件操作,磁盘分区挂载
ubuntu 在linux 对文件的相关操作【压缩,打包,软链接,文件权限】【head,tail,管道符,通配符,find,grep,cut等】脑图-CSDN博客 1.文件操作 在家目录下创建目录文件&#…...
[图形渲染]【Unity Shader】【游戏开发】 Shader数学基础17-法线变换基础与应用
在计算机图形学中,法线(normal) 是表示表面方向的向量。它在光照、阴影、碰撞检测等领域有着重要作用。本文将介绍如何在模型变换过程中正确变换法线,确保其在光照计算中的正确性,特别是法线与顶点的变换问题。 1. 法线与切线的基本概念 法线(Normal Vector) 法线(或…...
YOLOv9-0.1部分代码阅读笔记-train.py
train.py train.py 目录 train.py 1.所需的库和模块 2.def train(hyp, opt, device, callbacks): 3.def parse_opt(knownFalse): 4.def main(opt, callbacksCallbacks()): 5.def run(**kwargs): 6.if __name__ "__main__": 1.所需的库和模块 import …...
等保测评和密评的相关性和区别
等保测评和密评在网络安全领域均扮演着至关重要的角色,它们之间既存在相关性,又各具特色。 以下是对两者相关性和区别的详细阐述:相关性 1.法律基础:等保测评和密评都是依据国家相关法律法规开展的活动。 等保测评主要依据《网…...

活动预告 |【Part2】 Azure 在线技术公开课:迁移和保护 Windows Server 和 SQL Server 工作负载
课程介绍 通过 Microsoft Learn 免费参加 Microsoft Azure 在线技术公开课,掌握创造新机遇所需的技能,加快对 Microsoft 云技术的了解。参加我们举办的“迁移和保护 Windows Server 和 SQL Server 工作负载”活动,了解 Azure 如何为将工作负载…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...

AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...