PaddleOCROCR关键信息抽取训练过程
步骤1:python版本3.8.20
步骤2:下载代码,安装依赖
git clone https://gitee.com/PaddlePaddle/PaddleOCR.git
pip uninstall opencv-python -y # 安装PaddleOCR的依赖 !
pip install -r requirements.txt # 安装关键信息抽取任务的依赖 !
pip install -r ./ppstructure/kie/requirements.txt
步骤3:安装paddlepaddle_gpu
pip install paddlepaddle_gpu==2.5.2
步骤4:下载数据集
[XFUND](https://github.com/doc-analysis/XFUND)
数据集说明:
建议将训练图片放入同一个文件夹,并用一个文本文件记录图片路径和标签,文本文件里的内容如下:
```python linenums="1"
" 图像文件名 图像标注信息 "
zh_train_0.jpg [{"transcription": "汇丰晋信", "label": "other", "points": [[104, 114], [530, 114], [530, 175], [104, 175]], "id": 1, "linking": []}, {"transcription": "受理时间:", "label": "question", "points": [[126, 267], [266, 267], [266, 305], [126, 305]], "id": 7, "linking": [[7, 13]]}, {"transcription": "2020.6.15", "label": "answer", "points": [[321, 239], [537, 239], [537, 285], [321, 285]], "id": 13, "linking": [[7, 13]]}]
zh_train_1.jpg [{"transcription": "中国人体器官捐献", "label": "other", "points": [[544, 459], [954, 459], [954, 517], [544, 517]], "id": 1, "linking": []}, {"transcription": ">编号:MC545715483585", "label": "other", "points": [[1462, 470], [2054, 470], [2054, 543], [1462, 543]], "id": 10, "linking": []}, {"transcription": "CHINAORGANDONATION", "label": "other", "points": [[543, 516], [958, 516], [958, 551], [543, 551]], "id": 14, "linking": []}, {"transcription": "中国人体器官捐献志愿登记表", "label": "header", "points": [[635, 793], [1892, 793], [1892, 904], [635, 904]], "id": 18, "linking": []}]
...
```
文本文件中默认请将图片路径和图片标签用 `\t` 分割,如用其他方式分割将造成训练报错。
其中图像标注信息字符串经过json解析之后可以得到一个列表信息,列表中每个元素是一个字典,存储了每个文本行的需要信息,各个字段的含义如下。
- transcription: 存储了文本行的文字内容
- label: 该文本行内容所属的类别
- points: 存储文本行的四点位置信息
- id: 存储文本行的id信息,用于RE任务的训练
- linking: 存储文本行的之间的连接信息,用于RE任务的训练
(2)验证集
验证集构建方式与训练集相同。
(3)字典文件
训练集与验证集中的文本行包含标签信息,所有标签的列表存在字典文件中(如`class_list.txt`),字典文件中的每一行表示为一个类别名称。
以XFUND_zh数据为例,共包含4个类别,字典文件内容如下所示。
```text linenums="1"
OTHER
QUESTION
ANSWER
HEADER
```
在标注文件中,每个标注的文本行内容的`label`字段标注信息需要属于字典内容。
最终数据集应有如下文件结构:
```text linenums="1"
|-train_data
|-data_name
|- train.json
|- train
|- zh_train_0.png
|- zh_train_1.jpg
| ...
|- val.json
|- val
|- zh_val_0.png
|- zh_val_1.jpg
| ...
```
- 标注文件中的类别信息不区分大小写,如`HEADER`与`header`会被解析为相同的类别id,因此在标注的时候,不能使用小写处理后相同的字符串表示不同的类别。
- 在整理标注文件的时候,建议将other这个类别(其他,无需关注的文本行可以标注为other)放在第一行,在解析的时候,会将`other`类别的类别id解析为0,后续不会对该类进行可视化。
步骤5:在项目跟目录新建train_data,将XFUND解压到该目录中
步骤6:开始训练、评估kie模型
### 2.1. 启动训练
如果你没有使用自定义数据集,可以使用PaddleOCR中已经处理好的XFUND_zh数据集进行快速体验。
```bash linenums="1"
mkdir train_data
cd train_data
wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar && tar -xf XFUND.tar
cd ..
```
如果不希望训练,直接体验后面的模型评估、预测、动转静、推理的流程,可以下载PaddleOCR中提供的预训练模型,并跳过2.1部分。
使用下面的方法,下载基于XFUND数据的SER与RE任务预训练模型。
```bash linenums="1"
mkdir pretrained_model
cd pretrained_model
# 下载并解压SER预训练模型
wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar & tar -xf ser_vi_layoutxlm_xfund_pretrained.tar
# 下载并解压RE预训练模型
wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar & tar -xf re_vi_layoutxlm_xfund_pretrained.tar
```
开始训练:
- 如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false
- PaddleOCR在训练时,会默认下载VI-LayoutXLM预训练模型,这里无需预先下载。
```bash linenums="1"
# GPU训练 支持单卡,多卡训练
# 训练日志会自动保存到 配置文件中"{Global.save_model_dir}" 下的train.log文件中
# SER单卡训练
python3 tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml
# SER多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml
# RE任务单卡训练
python3 tools/train.py -c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml
```
以SER任务为例,正常启动训练后,会看到以下log输出:
```bash linenums="1"
[2022/08/08 16:28:28] ppocr INFO: epoch: [1/200], global_step: 10, lr: 0.000006, loss: 1.871535, avg_reader_cost: 0.28200 s, avg_batch_cost: 0.82318 s, avg_samples: 8.0, ips: 9.71838 samples/s, eta: 0:51:59
[2022/08/08 16:28:33] ppocr INFO: epoch: [1/200], global_step: 19, lr: 0.000018, loss: 1.461939, avg_reader_cost: 0.00042 s, avg_batch_cost: 0.32037 s, avg_samples: 6.9, ips: 21.53773 samples/s, eta: 0:37:55
[2022/08/08 16:28:39] ppocr INFO: cur metric, precision: 0.11526348939743859, recall: 0.19776657060518732, hmean: 0.14564265817747712, fps: 34.008392345050055
[2022/08/08 16:28:45] ppocr INFO: save best model is to ./output/ser_vi_layoutxlm_xfund_zh/best_accuracy
[2022/08/08 16:28:45] ppocr INFO: best metric, hmean: 0.14564265817747712, precision: 0.11526348939743859, recall: 0.19776657060518732, fps: 34.008392345050055, best_epoch: 1
[2022/08/08 16:28:51] ppocr INFO: save model in ./output/ser_vi_layoutxlm_xfund_zh/latest
```
log 中自动打印如下信息:
| 字段 | 含义 |
| :----: | :------: |
| epoch | 当前迭代轮次 |
| iter | 当前迭代次数 |
| lr | 当前学习率 |
| loss | 当前损失函数 |
| reader_cost | 当前 batch 数据处理耗时 |
| batch_cost | 当前 batch 总耗时 |
| samples | 当前 batch 内的样本数 |
| ips | 每秒处理图片的数量 |
PaddleOCR支持训练和评估交替进行, 可以在 `configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml` 中修改 `eval_batch_step` 设置评估频率,默认每19个iter评估一次。评估过程中默认将最佳hmean模型,保存为 `output/ser_vi_layoutxlm_xfund_zh/best_accuracy/` 。
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
**提示:** 可通过 -c 参数选择 `configs/kie/` 路径下的多种模型配置进行训练,PaddleOCR支持的信息抽取算法可以参考[前沿算法列表](../../algorithm/overview.md)。
如果你希望训练自己的数据集,需要修改配置文件中的数据配置、字典文件以及类别数。
以 `configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml` 为例,修改的内容如下所示。
```yaml linenums="1"
Architecture:
# ...
Backbone:
name: LayoutXLMForSer
pretrained: True
mode: vi
# 由于采用BIO标注,假设字典中包含n个字段(包含other)时,则类别数为2n-1; 假设字典中包含n个字段(不含other)时,则类别数为2n+1。否则在train过程会报:IndexError: (OutOfRange) label value should less than the shape of axis dimension 。
num_classes: &num_classes 7
PostProcess:
name: kieSerTokenLayoutLMPostProcess
# 修改字典文件的路径为你自定义的数据集的字典路径
class_path: &class_path train_data/XFUND/class_list_xfun.txt
Train:
dataset:
name: SimpleDataSet
# 修改为你自己的训练数据目录
data_dir: train_data/XFUND/zh_train/image
# 修改为你自己的训练数据标签文件
label_file_list:
- train_data/XFUND/zh_train/train.json
...
loader:
# 训练时的单卡batch_size
batch_size_per_card: 8
...
Eval:
dataset:
name: SimpleDataSet
# 修改为你自己的验证数据目录
data_dir: train_data/XFUND/zh_val/image
# 修改为你自己的验证数据标签文件
label_file_list:
- train_data/XFUND/zh_val/val.json
...
loader:
# 验证时的单卡batch_size
batch_size_per_card: 8
```
**注意,预测/评估时的配置文件请务必与训练一致。**
### 2.2. 断点训练
如果训练程序中断,如果希望加载训练中断的模型从而恢复训练,可以通过指定`Architecture.Backbone.checkpoints`指定要加载的模型路径:
```bash linenums="1"
python3 tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/ser_vi_layoutxlm_xfund_zh/best_accuracy
```
**注意**:
- `Architecture.Backbone.checkpoints`的优先级高于`Architecture.Backbone.pretrained`,需要加载之前训练好的训练模型进行模型微调、恢复训练、模型评估时,需要使用`Architecture.Backbone.checkpoints`指定模型参数路径;如果需要使用默认提供的通用预训练模型进行训练,则需要指定`Architecture.Backbone.pretrained`为`True`,同时指定`Architecture.Backbone.checkpoints`为空(`null`)。
- LayoutXLM系列模型均是调用了PaddleNLP中的预训练模型,模型加载与保存的逻辑与PaddleNLP基本一致,因此在这里不需要指定`Global.pretrained_model`或者`Global.checkpoints`参数;此外,LayoutXLM系列模型的蒸馏训练目前不支持断点训练。
### 2.3. 混合精度训练
coming soon!
### 2.4. 分布式训练
多机多卡训练时,通过 `--ips` 参数设置使用的机器IP地址,通过 `--gpus` 参数设置使用的GPU ID:
```bash linenums="1"
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml
```
**注意:** (1)采用多机多卡训练时,需要替换上面命令中的ips值为您机器的地址,机器之间需要能够相互ping通;(2)训练时需要在多个机器上分别启动命令。查看机器ip地址的命令为`ifconfig`;(3)更多关于分布式训练的性能优势等信息,请参考:[分布式训练教程](../blog/distributed_training.md)。
### 2.5. 知识蒸馏训练
PaddleOCR支持了基于U-DML知识蒸馏的关键信息抽取模型训练过程,配置文件请参考:[ser_vi_layoutxlm_xfund_zh_udml.yml](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh_udml.yml),更多关于知识蒸馏的说明文档请参考:[知识蒸馏说明文档](../model_compress/knowledge_distillation.md)。
**注意**: PaddleOCR中LayoutXLM系列关键信息抽取模型的保存与加载逻辑与PaddleNLP保持一致,因此在蒸馏的过程中仅保存了学生模型的参数,如果希望使用保存的模型进行评估,需要使用学生模型的配置(上面的蒸馏文件对应的学生模型为[ser_vi_layoutxlm_xfund_zh.yml](https://github.com/PaddlePaddle/PaddleOCR/tree/main/configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml))
### 2.6. 其他训练环境
- Windows GPU/CPU
在Windows平台上与Linux平台略有不同:
Windows平台只支持`单卡`的训练与预测,指定GPU进行训练`set CUDA_VISIBLE_DEVICES=0`
在Windows平台,DataLoader只支持单进程模式,因此需要设置 `num_workers` 为0;
- macOS
不支持GPU模式,需要在配置文件中设置`use_gpu`为False,其余训练评估预测命令与Linux GPU完全相同。
- Linux DCU
DCU设备上运行需要设置环境变量 `export HIP_VISIBLE_DEVICES=0,1,2,3`,其余训练评估预测命令与Linux GPU完全相同。
## 3. 模型评估与预测
### 3.1. 指标评估
训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Architecture.Backbone.checkpoints`指向保存的参数文件。评估数据集可以通过 `configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml` 修改Eval中的 `label_file_path` 设置。
```bash linenums="1"
# GPU 评估, Global.checkpoints 为待测权重
python3 tools/eval.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/ser_vi_layoutxlm_xfund_zh/best_accuracy
```
会输出以下信息,打印出precision、recall、hmean等信息。
```bash linenums="1"
[2022/08/09 07:59:28] ppocr INFO: metric eval ***************
[2022/08/09 07:59:28] ppocr INFO: precision:0.697476609016161
[2022/08/09 07:59:28] ppocr INFO: recall:0.8861671469740634
[2022/08/09 07:59:28] ppocr INFO: hmean:0.7805806758686339
[2022/08/09 07:59:28] ppocr INFO: fps:17.367364606899105
```
### 3.2. 测试信息抽取结果
使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。
默认预测的图片存储在 `infer_img` 里,通过 `-o Architecture.Backbone.checkpoints` 加载训练好的参数文件:
根据配置文件中设置的 `save_model_dir` 和 `save_epoch_step` 字段,会有以下几种参数被保存下来:
```text linenums="1"
output/ser_vi_layoutxlm_xfund_zh/
├── best_accuracy
├── metric.states
├── model_config.json
├── model_state.pdparams
├── best_accuracy.pdopt
├── config.yml
├── train.log
├── latest
├── metric.states
├── model_config.json
├── model_state.pdparams
├── latest.pdopt
```
其中 best_accuracy.*是评估集上的最优模型;latest.* 是最新保存的一个模型。
预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml` 完成了模型的训练过程。
您可以使用如下命令进行中文模型预测。
```bash linenums="1"
python3 tools/infer_kie_token_ser.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/ser_vi_layoutxlm_xfund_zh/best_accuracy Global.infer_img=./ppstructure/docs/kie/input/zh_val_42.jpg
```
预测图片如下所示,图片会存储在`Global.save_res_path`路径中。

预测过程中,默认会加载PP-OCRv3的检测识别模型,用于OCR的信息抽取,如果希望加载预先获取的OCR结果,可以使用下面的方式进行预测,指定`Global.infer_img`为标注文件,其中包含图片路径以及OCR信息,同时指定`Global.infer_mode`为False,表示此时不使用OCR预测引擎。
```bash linenums="1"
python3 tools/infer_kie_token_ser.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/ser_vi_layoutxlm_xfund_zh/best_accuracy Global.infer_img=./train_data/XFUND/zh_val/val.json Global.infer_mode=False
```
对于上述图片,如果使用标注的OCR结果进行信息抽取,预测结果如下。

可以看出,部分检测框信息更加准确,但是整体信息抽取识别结果基本一致。
在RE任务模型预测时,需要先给出模型SER结果,因此需要同时加载SER的配置文件与模型权重,示例如下。
```bash linenums="1"
python3 ./tools/infer_kie_token_ser_re.py \
-c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml \
-o Architecture.Backbone.checkpoints=./pretrain_models/re_vi_layoutxlm_udml_xfund_zh/best_accuracy/ \
Global.infer_img=./train_data/XFUND/zh_val/image/ \
-c_ser configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \
-o_ser Architecture.Backbone.checkpoints=pretrain_models/ \
ser_vi_layoutxlm_udml_xfund_zh/best_accuracy/
```
预测结果如下所示。

如果希望使用标注或者预先获取的OCR信息进行关键信息抽取,同上,可以指定`Global.infer_mode`为False,指定`Global.infer_img`为标注文件。
```bash linenums="1"
python3 ./tools/infer_kie_token_ser_re.py -c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./pretrain_models/re_vi_layoutxlm_udml_xfund_zh/re_layoutxlm_xfund_zh_v4_udml/best_accuracy/ Global.infer_img=./train_data/XFUND/zh_val/val.json Global.infer_mode=False -c_ser configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o_ser Architecture.Backbone.checkpoints=pretrain_models/ser_vi_layoutxlm_udml_xfund_zh/best_accuracy/
```
其中`c_ser`表示SER的配置文件,`o_ser` 后面需要加上待修改的SER模型与配置文件,如预训练权重等。
预测结果如下所示。

可以看出,直接使用标注的OCR结果的RE预测结果要更加准确一些。
## 4. 模型导出与预测
### 4.1 模型导出
inference 模型(`paddle.jit.save`保存的模型)
一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。
训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。
与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。
信息抽取模型中的SER任务转inference模型步骤如下:
```bash linenums="1"
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Architecture.Backbone.checkpoints 参数设置待转换的训练模型地址
# Global.save_inference_dir 参数设置转换的模型将保存的地址
python3 tools/export_model.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/ser_vi_layoutxlm_xfund_zh/best_accuracy Global.save_inference_dir=./inference/ser_vi_layoutxlm
```
转换成功后,在目录下有三个文件:
```text linenums="1"
inference/ser_vi_layoutxlm/
├── inference.pdiparams # inference模型的参数文件
├── inference.pdiparams.info # inference模型的参数信息,可忽略
└── inference.pdmodel # inference模型的模型结构文件
```
信息抽取模型中的RE任务转inference模型步骤如下:
```bash linenums="1"
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Architecture.Backbone.checkpoints 参数设置待转换的训练模型地址
# Global.save_inference_dir 参数设置转换的模型将保存的地址
python3 tools/export_model.py -c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./output/re_vi_layoutxlm_xfund_zh/best_accuracy Global.save_inference_dir=./inference/re_vi_layoutxlm
```
转换成功后,在目录下有三个文件:
```text linenums="1"
inference/re_vi_layoutxlm/
├── inference.pdiparams # inference模型的参数文件
├── inference.pdiparams.info # inference模型的参数信息,可忽略
└── inference.pdmodel # inference模型的模型结构文件
```
### 4.2 模型推理
VI-LayoutXLM模型基于SER任务进行推理,可以执行如下命令:
```bash linenums="1"
cd ppstructure
python3 kie/predict_kie_token_ser.py \
--kie_algorithm=LayoutXLM \
--ser_model_dir=../inference/ser_vi_layoutxlm \
--image_dir=./docs/kie/input/zh_val_42.jpg \
--ser_dict_path=../train_data/XFUND/class_list_xfun.txt \
--vis_font_path=../doc/fonts/simfang.ttf \
--ocr_order_method="tb-yx"
```
可视化SER结果结果默认保存到`./output`文件夹里面。结果示例如下:

VI-LayoutXLM模型基于RE任务进行推理,可以执行如下命令:
```bash linenums="1"
cd ppstructure
python3 kie/predict_kie_token_ser_re.py \
--kie_algorithm=LayoutXLM \
--re_model_dir=../inference/re_vi_layoutxlm \
--ser_model_dir=../inference/ser_vi_layoutxlm \
--use_visual_backbone=False \
--image_dir=./docs/kie/input/zh_val_42.jpg \
--ser_dict_path=../train_data/XFUND/class_list_xfun.txt \
--vis_font_path=../doc/fonts/simfang.ttf \
--ocr_order_method="tb-yx"
```
RE可视化结果默认保存到`./output`文件夹里面,结果示例如下:

## 5. FAQ
Q1: 训练模型转inference 模型之后预测效果不一致?
**A**:该问题多是trained model预测时候的预处理、后处理参数和inference model预测的时候的预处理、后处理参数不一致导致的。可以对比训练使用的配置文件中的预处理、后处理和预测时是否存在差异。
相关文章:
PaddleOCROCR关键信息抽取训练过程
步骤1:python版本3.8.20 步骤2:下载代码,安装依赖 git clone https://gitee.com/PaddlePaddle/PaddleOCR.git pip uninstall opencv-python -y # 安装PaddleOCR的依赖 ! pip install -r requirements.txt # 安装关键信息抽取任务的依赖 !…...

用Python操作字节流中的Excel文档
Python能够轻松地从字节流中加载文件,在不依赖于外部存储的情况下直接对其进行读取、修改等复杂操作,并最终将更改后的文档保存回字节串中。这种能力不仅极大地提高了数据处理的灵活性,还确保了数据的安全性和完整性,尤其是在网络…...
python 桶排序(Bucket Sort)
桶排序(Bucket Sort) 桶排序是一种分布式排序算法,适用于对均匀分布的数据进行排序。它的基本思想是:将数据分到有限数量的桶中,每个桶分别排序,最后将所有桶中的数据合并。 桶排序的步骤: 划…...
Elasticsearch:探索 Elastic 向量数据库的深度应用
Elasticsearch:探索 Elastic 向量数据库的深度应用 一、Elasticsearch 向量数据库简介 1. Elasticsearch 向量数据库的概念 Elasticsearch 本身是一个基于 Lucene 的搜索引擎,提供了全文搜索和分析的功能。随着技术的发展,Elasticsearch 也…...
【每日学点鸿蒙知识】属性变量key、waterflow卡顿问题、包无法上传、Video控件播放视频、Vue类似语法
1、HarmonyOS 属性变量常量是否可以作为object对象的key? a: object new Object() this.a[Constants.TEST_KEY] "456" 可以先定义,再赋值 2、首页点击回到waterflow的首节点,0~index全部节点被重建,导致卡顿 使用s…...

小程序中引入echarts(保姆级教程)
hello hello~ ,这里是 code袁~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 🦁作者简介:一名喜欢分享和记录学习的在校大学生…...
基于 Node.js 的 ORM(对象关系映射)工具——Sequelize介绍与使用,并举案例分析
便捷性介绍 支持多种数据库,包括 PostgreSQL、MySQL、MariaDB、SQLite 和 Microsoft SQL Server。Sequelize 提供了丰富的功能,帮助开发者用 JavaScript(或 TypeScript)代码操作数据库,而无需直接书写 SQL 语句。 Se…...
python 插入排序(Insertion Sort)
插入排序(Insertion Sort) 插入排序是一种简单的排序算法。它的基本思想是:将数组分为已排序部分和未排序部分,然后逐个将未排序部分的元素插入到已排序部分的正确位置。插入排序类似于整理扑克牌的过程。 插入排序的步骤&#…...

电子应用设计方案81:智能AI冲奶瓶系统设计
智能 AI 冲奶瓶系统设计 一、引言 智能 AI 冲奶瓶系统旨在为父母或照顾者提供便捷、准确和卫生的冲奶服务,特别是在夜间或忙碌时,减轻负担并确保婴儿获得适宜的营养。 二、系统概述 1. 系统目标 - 精确调配奶粉和水的比例,满足不同年龄段婴…...
JAVA高并发总结
JAVA高并发编程总结 在现代应用中,高并发编程是非常重要的一部分,尤其是在分布式系统、微服务架构、实时数据处理等领域。Java 提供了丰富的并发工具和技术,帮助开发者在多线程和高并发的场景下提高应用的性能和稳定性。以下是 Java 高并发编…...

【AIGC】使用Java实现Azure语音服务批量转录功能:完整指南
文章目录 引言技术背景环境准备详细实现1. 基础架构设计2. 实现文件上传功能3. 提交转录任务crul4. 获取转录结果 使用示例结果示例最佳实践与注意事项总结 引言 在当今数字化时代,将音频内容转换为文本的需求越来越普遍。无论是会议记录、视频字幕生成,…...

arcgis模版空库怎么用(一)
这里以某个项目的数据为例: 可以看到,属性表中全部只有列标题,无数据内容 可能有些人会认为空库是用来往里面加入信息的,其实不是,正确的用法如下: 一、下图是我演示用的数据,我们可以看到其中…...

【电机控制】基于STC8H1K28的六步换向——方波驱动(软件篇)
【电机控制】基于STC8H1K28的六步换向——方波驱动(软件篇) 文章目录 [TOC](文章目录) 前言一、main.c二、GPIO.c三、PWMA.c四、ADC.c五、CMP.c六、Timer.c七、PMSM.c八、参考资料总结 前言 【电机控制】STC8H无感方波驱动—反电动势过零检测六步换向法 …...

小程序配置文件 —— 13 全局配置 - window配置
全局配置 - window配置 这里讲解根目录 app.json 中的 window 字段,window 字段用于设置小程序的状态栏、导航条、标题、窗口背景色; 状态栏:顶部位置,有网络信号、时间信息、电池信息等;导航条:有一个当…...
全球域名市场科普之域名交易平台介绍——Sedo与Afternic
关于Dynadot Dynadot是通过ICANN认证的域名注册商,自2002年成立以来,服务于全球108个国家和地区的客户,为数以万计的客户提供简洁,优惠,安全的域名注册以及管理服务。 Dynadot平台操作教程索引(包括域名邮…...

leetcode108:将有序数组转化为二叉搜索树
给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 平衡 二叉搜索树。 示例 1: 输入:nums [-10,-3,0,5,9] 输出:[0,-3,9,-10,null,5] 解释:[0,-10,5,null,-3,null,9] 也将被视为正确…...
截图技术方案
安卓截屏技术附带悬浮窗自动存储功能_安卓截图浮窗-CSDN博客 https://chat.baidu.com/search?dyTabStrMCwxMiwzLDEsMiwxMyw3LDYsNSw5&pdcsaitab&setypecsaitab&extParamsJson%7B%22apagelid%22%3A%2210990774271994514433%22%2C%22enter_type%22%3A%22a_ai_index%…...

程序员测试日常小工具
作为一名程序员,或者测试人员,日常工作最常用的工具有哪些,截图,截图漂浮,翻译,日期处理,api调用..., 当你拿到一串报文后,想要json转换时,是不是要打…...
Kubernetes: NetworkPolicy 的实践应用
一、Network Policy 是什么,在云原生领域有和作用 Network Policy 是 Kubernetes 官方提出来的一种网络策略的规范,用户通过编写符合对应规范的规则来控制 k8s 集群内 L3 和 L4 层的网络流量。 NetworkPolicy 主要的功能就是实现在云原生领域的容器网络管控它给用…...

HTML5滑块(Slider)
HTML5 的滑块(Slider)控件允许用户通过拖动滑块来选择数值。以下是如何实现一个简单的滑块组件的详细说明。 HTML5 滑块组件 1. 基本结构 使用 <input type"range"> 元素可以创建一个滑块。下面是基本实现的代码示例: <…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...