SQL-leetcode-183. 从不订购的客户
183. 从不订购的客户
Customers 表:
±------------±--------+
| Column Name | Type |
±------------±--------+
| id | int |
| name | varchar |
±------------±--------+
在 SQL 中,id 是该表的主键。
该表的每一行都表示客户的 ID 和名称。
Orders 表:
±------------±-----+
| Column Name | Type |
±------------±-----+
| id | int |
| customerId | int |
±------------±-----+
在 SQL 中,id 是该表的主键。
customerId 是 Customers 表中 ID 的外键( Pandas 中的连接键)。
该表的每一行都表示订单的 ID 和订购该订单的客户的 ID。
找出所有从不点任何东西的顾客。
以 任意顺序 返回结果表。
结果格式如下所示。
示例 1:
输入:
Customers table:
±—±------+
| id | name |
±—±------+
| 1 | Joe |
| 2 | Henry |
| 3 | Sam |
| 4 | Max |
±—±------+
Orders table:
±—±-----------+
| id | customerId |
±—±-----------+
| 1 | 3 |
| 2 | 1 |
±—±-----------+
输出:
±----------+
| Customers |
±----------+
| Henry |
| Max |
±----------+
题解
- 该表的每一行都表示订单的 ID 和订购该订单的客户的 ID。
啥子含义?就是明细表呗,主键唯一,客户唯一,订单唯一,客户与订单是1对n的关系,也就是说订单是最完整的数据,客户可能没有订单,但有了订单已经能找到对应的客户。 - 找出所有从不点任何东西的顾客。
从来不点任何东西,啥子含义?说白了就是在订单明细表中不存在任何一条记录的客户。
那这样是不是就分析清晰了?怎么判断这个表里的数据有没有在另外一个表里呢? join拉齐? union很显然不合适
还要判断不在某一个表中的数据呢?外连接比较合适,关联不上会置空嘛
于是乎方法一诞生
方法一 外连接+where
select c1.name as customers
from customers c1 left join orders o1 on c1.id=o1.customerId
where o1.id is null
方法二 子查询
什么思路呢?先找到点单的有哪些,再逆向思维取反,搞定
select name as customers
from customers
where id not in(select distinct customerId from orders)
方法三 不用in还有什么吗?not exists
思路同上,找到另外一张表不存在的记录,但exists 会比子查询性能更佳
not exists (select distinct customerId from orders o where c.id=o.customerId)
这是整体,exists 返回值是 true或者false,可能会有人看不懂,简单解释下
select name as customers
from customers c
where not exists (select distinct customerId from orders o where c.id=o.customerId)
这里贴个图就不多bb拉
方法四 暂时没想到,等想到了再说,够用就行
相关文章:

SQL-leetcode-183. 从不订购的客户
183. 从不订购的客户 Customers 表: -------------------- | Column Name | Type | -------------------- | id | int | | name | varchar | -------------------- 在 SQL 中,id 是该表的主键。 该表的每一行都表示客户的 ID 和名称。 Orders 表&#…...

苹果系统MacOS下ObjectC建立的App程序访问opencv加载图片程序
前言 苹果系统下使用opencv感觉还是有些不太方便,总是感觉有点受到限制。本博客描述的是在MacOS下建立App程序然后调用opencv显示图片时出现的一些问题并最后解决的一个过程。 一、程序的建立 选择程序的类型: 选择界面模式和编程语言: 其余…...

《代码随想录》Day21打卡!
写在前面:祝大家新年快乐!!!2025年快乐,2024年拜拜~~~ 《代码随想录》二叉树:修剪二叉搜索树 本题的完整题目如下: 本题的完整思路如下: 1.本题使用递归进行求解,所以分…...
Dell服务器升级ubuntu 22.04失败解决
ubuntu系统原版本20.04,服务器dell T40. 执行apt update后,再执行apt upgrade。 apt update执行成功,但apt upgrade执行中断,提示如下: Checking package manager Reading package lists... Done Building dependen…...

构建全志 T113 Tina SDK
1、环境配置: 准备一个 Ubuntu 系统,可以是 WSL,虚拟机等,建议版本是 20.04。 1.1、安装必要的软件 进入系统后,输入下方命令安装需要的工具 : sudo apt update -y sudo apt full-upgrade -y sudo apt i…...
(推荐)【通用业务分发架构】1.业务分发 2.rpc调用 3.Event事件系统
一.Reflections和SpringUtil完成扫描包的(反射缓存) 二.id与class的映射泛型上下文(玩家是否登录,rpc调用SeqId,class类名)反射调用 1.netty层的 AccountMsgParam // 登录前 OnlineMsgParam // 登录后 SceneMsgParam // 发到场景层的 2.跨进程rpc调用的…...

最近的一些事情
正义不会缺席 这家公司违法辞退不给工资乱开离职证明。严重影响个人发展。 今天终于收到法院的判决书。 警醒自身发展与社会之间密切交流,敲响警钟。 虽然最终得到的法院的支持,但过程举步维艰。 这其中的过程,也让我对律师、法院和中国…...
CP AUTOSAR标准之FlexRayDriver(AUTOSAR_SWS_FlexRayDriver)(更新中……)
1 简介和功能概述 FlexRay驱动程序(Fr)抽象了特定FlexRay通信控制器(CC)的硬件相关实现细节。本规范主要依赖于符合FlexRay规范[13]的FlexRay CC。此外,本规范还支持符合FlexRay规范[14]的旧版FlexRay控制器。本SWS中因支持的FlexRay规范不同而导致的不同行为在适用的情况下以…...

Cesium 实战 27 - 三维视频融合(视频投影)
Cesium 实战 27 - 三维视频融合(视频投影) 核心代码完整代码在线示例在 Cesium 中有几种展示视频的方式,比如墙体使用视频材质,还有地面多边形使用视频材质,都可以实现视频功能。 但是随着摄像头和无人机的流行,需要视频和场景深度融合,简单的实现方式则不能满足需求。…...

GraphRAG实践:docker部署neo4j
概述 随着图数据库(Graph Database)的流行,越来越多的应用场景开始采用图数据库来处理复杂的关系数据。Neo4j作为领先的图数据库之一,提供了强大的图形查询语言Cypher、高效的存储结构和丰富的生态系统,使得它成为开发…...

常用的数据库类型都有哪些
在Java开发和信息系统架构中,数据库扮演着存储和管理数据的关键角色。数据库种类繁多,各有特色,适用于不同的应用场景。 1. 关系型数据库(RDBMS): • 关系型数据库是最为人熟知的数据库类型,数据…...

swiftui开发页面加载发送请求初始化@State变量
在SwiftUI中,你不能直接在init中更新State变量,因为State是由SwiftUI框架管理的,初始化时不允许直接修改。所以需要在onAppear发送请求然后修改State状态。 在SwiftUI中,如果希望在页面加载时立即发送网络请求,可以使…...
Ribbon和Eureka的集成
Ribbon和Eureka的集成是Spring Cloud Netflix生态系统的一部分,通常用于微服务架构中,以实现客户端负载均衡和服务发现。以下是更详细的集成步骤: 1. 引入依赖 在你的Spring Boot项目的pom.xml文件中添加Eureka客户端和Ribbon的依赖&#x…...
关于UE加载osgb数据的研究(一)
最近关于倾斜数据在UE中加载显示的问题,直接转换格式本地加载的方式避免了数据延迟加载、缓存加载,动态刷新等问题,但是也暴露了突出的问题:常规的模型格式会丢失掉倾斜数据的lod,致使效果缺失。 故而需要深入研究一下UE加载osgb数据的方式方法。 首先,我们需得学习一下…...
探索数据之美,Plotly引领可视化新风尚
在数据如潮的今天,如何精准捕捉信息的脉搏,让数据说话?Plotly,这款强大的数据可视化工具,正以其卓越的性能和丰富的功能,成为数据分析师、科学家及工程师们的得力助手。 Plotly不仅仅是一个绘图库…...
List排序的方法
List 排序方法: 1. list 的 sort() package com.example.a; import java.util.ArrayList; import java.util.Comparator; import java.util.List; class User{private Integer score;private Integer age;public User(Integer score, Integer age){super();this.…...
BurstAttention:高效的分布式注意力计算框架
BurstAttention:高效的分布式注意力计算框架 在现代大型语言模型(LLMs)的应用中,提升注意力机制的计算效率已成为研究的热点。当前,提升计算效率主要有两种方法:一种是优化单设备的计算和存储能力…...
大数据治理:构建稳健的数据生态系统
引言 随着信息技术的迅猛发展,企业每天都在生成海量的数据。这些数据不仅来自传统的业务交易系统,还包括社交媒体、物联网设备、移动应用程序等多个渠道。大数据治理旨在确保组织能够有效地管理其拥有的所有数据资产,以支持决策制定、优化业…...
【图书介绍】几本适合当教材的大数据技术图书
《Spark SQL大数据分析快速上手》 《Spark SQL大数据分析快速上手(大数据技术丛书)》(迟殿委,王泽慧,黄茵茵)【摘要 书评 试读】- 京东图书 《Spark SQL大数据分析快速上手》内容基于Spark新版本展开,符合企业目前开…...

阴阳师の新手如何速刷5个SP/SSR?!(急速育成)
目标:攒5个SP/SSR式神,参与急速育成,省四个黑蛋(想要快速升级技能而且经常上场的式神在攒够5个式神前先不升级)【理论上组成:10蓝40蓝预约召唤福利20修行or抽卡】 关键点:蓝票,新手…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...