大数据与机器学习(它们有何关系?)
想了解大数据和机器学习吗?我们将为你解释它们是什么、彼此之间有何关联,以及它们为何在数据密集型应用中如此重要。
大数据和机器学习是如何相互关联的?
大数据指的是传统存储方法无法处理的海量数据。机器学习则是计算机系统从观察结果和数据中学习并进行预测的能力。机器学习能够利用大数据研究提供的信息来生成有价值的商业洞察。
什么是大数据和机器学习?
“大数据” 和 “机器学习” 这样的术语经常一起被提及,因为在现代计算中,它们密切相关。总体而言,机器学习需要大量的训练数据才能在当今的创新水平上发挥作用。
“大数据” 并非仅仅指数据量庞大。对于什么是 “大” 数据、什么是 “小” 数据并没有明确的界限划分。确切地说,它是一种计算范式,即利用数量远超人类历史上以往所汇集的数据来为应用程序、分析以及机器学习提供支持。如此海量的数据得益于现代数据收集工具(主要与云计算相关联),这些工具能够从世界各地平台上的用户那里收集信息。
此外,“大数据” 不一定是单个项目。不同行业的企业和组织会从使用其服务的用户那里收集GB甚至TB量级的信息。例如,保险行业的机构可以收集客户理赔的历史数据、事故统计数据、天气模式、路况以及其他行为形式的数据,以便做出更明智、更准确的决策。
这里面临的挑战在于,人类的思维无法涵盖或处理这片浩瀚的信息海洋,更不用说从中提取出任何有意义的内容了。云应用和处理方面的新发展推动了分析技术的进步,使其能够将这些海量数据转化为可付诸行动的信息。
而机器学习就是受这一信息流影响的领域之一。当初人们刚开始认真研究机器学习和人工智能(AI)时,对于其所能实现的功能抱有许多过于乐观的想法。从那以后,在理论、开发以及创新方面取得了长足进步,人们也意识到当时这项技术尚未成熟。
我们已经看到特定行业的一些公司利用其云计算能力来收集、处理和计算大数据,使得应用机器学习算法能够以我们从未想象过的方式发挥作用。
大数据分析、机器学习与人工智能
需要注意的是,大数据、机器学习(以及与之密切相关的人工智能)是随着时间推移逐渐发展起来的截然不同的学科领域。
大数据分析:从数据中获取有价值的信息一直是现代计算领域几十年来的追求。在较小程度上,这也是人工智能和机器学习研究的一个目标。然而,大数据分析本身就是一个独立的学科领域。在分析领域中,数据科学家和工程师会研究如何摄取、整理、组织以及解读结构化和非结构化数据。大数据分析专注于使用不同的摄取和分类方法,为用户提炼出有意义的见解 —— 用户可以利用这些见解围绕数据制定更好的决策流程。在很多情况下,大数据分析可以实现自动化,而且我们也看到了一些平台,它们能让非技术用户在不了解底层流程的情况下操控仪表盘和可视化界面。
机器学习:机器学习名副其实,就是机器进行学习的过程。这是通过开发能够摄取数据并利用其为自动化的战略决策提供依据的算法来实现的。机器学习算法专门聚焦于计算机如何利用数据在特定情境下学习策略和行为。在机器学习这一学科领域内,还包含深度学习和强化学习等子学科。
人工智能:自 20 世纪中叶以来,人工智能一直是热门话题。虽然它与机器学习密切相关,但实际上人工智能是一个独立的学科领域。机器学习侧重于机器如何学习行为,而人工智能则全面探讨智能机器如何在不同情境下发挥作用。
这些学科领域之间存在着大量重叠之处。人工智能依赖机器学习算法以及由其创建的 “智能核心”(通常通过神经网络系统实现)。二者都依赖大数据分析来处理数据,并提供不同的视角或方法。
高性能计算与机器学习
大数据的兴起与云架构的兴起直接相关。以往的网络系统根本无法支持推动高级分析和机器学习所需的工作量。但是,借助云计算及相关技术,我们看到人工智能和机器学习已成为现代经济中切实可行的组成部分。
云计算究竟是凭借什么实现了大数据分析和机器学习呢?以下是几个方面的原因:
-
自动化:云平台支持自动化的数据处理,这使得管理员无需直接管理输入数据和信息流。将自动化和数据科学家引入云计算的举措,极大地提高了云数据系统的效率、效能以及准确性。
-
分布式环境:从表面上看,网络系统效率低下,并且依赖特定技术,而这些技术往往会成为性能的瓶颈。然而,分布式云环境在设计原则上消除了瓶颈和数据孤岛,使得性能和可扩展性成为重中之重。大型云环境能够支持日益庞大且复杂的数据处理系统。
-
高性能计算:云技术促使人们重新思考高性能计算(HPC)的内涵。借助优化的硬件和软件、自动化处理以及数据组织,并能即时扩展的高性能计算系统的现代应用,为机器学习和大数据分析提供了强大动力,使其功能远超 15 到 20 年前我们所能见到的水平。
本文转载自 雪兽软件
更多精彩推荐请访问 雪兽软件官网
相关文章:

大数据与机器学习(它们有何关系?)
想了解大数据和机器学习吗?我们将为你解释它们是什么、彼此之间有何关联,以及它们为何在数据密集型应用中如此重要。 大数据和机器学习是如何相互关联的? 大数据指的是传统存储方法无法处理的海量数据。机器学习则是计算机系统从观察结果和…...

深入浅出 Spring(一) | Spring简介、IOC理论推导、快速上手 Spring
1. spring 1.1 简介 Spring : 春天 —>给软件行业带来了春天 2002年,Rod Jahnson首次推出了Spring框架雏形interface21框架。 2004年3月24日,Spring框架以interface21框架为基础,经过重新设计,发布了1.0正式版。 很难想象…...
IDEA 社区版 SpringBoot不能启动
报错原因,Failed to load class [javax.servlet.Filter] <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-tomcat</artifactId><scope>provided</scope> </dependency>…...

职场常用Excel基础01-数据验证
大家好,excel在职场中使用非常频繁,今天和大家一起分享一下excel中数据验证相关的内容~ 在Excel中,数据验证(Data Validation)是一项非常有用的功能,它可以帮助用户限制输入到单元格中的数据类型和范围&am…...

活动预告 |【Part1】Microsoft Azure 在线技术公开课:数据基础知识
课程介绍 参加“Azure 在线技术公开课:数据基础知识”活动,了解有关云环境和数据服务中核心数据库概念的基础知识。通过本次免费的介绍性活动,你将提升在关系数据、非关系数据、大数据和分析方面的技能。 活动时间:01 月 07 日…...

RabbitMQ - 1 ( 7000 字 RabbitMQ 入门级教程 )
一: 在互联网行业,许多公司喜欢用动物命名产品或作为公司的 Logo 和吉祥物,比如腾讯的企鹅、京东的狗、美团的袋鼠、携程的海豚,而阿里更是凭借蚂蚁、飞猪、天猫、菜鸟、闲鱼、盒马等,打造了一座“动物园”。Rabbit&a…...

Docker Compose 构建 EMQX 集群 实现mqqt 和websocket
EMQX 集群化管理mqqt真香 目录 #目录 /usr/emqx 容器构建 vim docker-compose.yml version: 3services:emqx1:image: emqx:5.8.3container_name: emqx1environment:- "EMQX_NODE_NAMEemqxnode1.emqx.io"- "EMQX_CLUSTER__DISCOVERY_STRATEGYstatic"- …...
Spring 过滤器:OncePerRequestFilter 应用详解
在Web应用中,过滤器(Filter)是一个强大的工具,它可以在请求到达目标资源之前或响应返回客户端之前对请求或响应进行拦截和处理。然而,在某些情况下,我们可能希望确保过滤器逻辑在一次完整的HTTP请求中仅执行…...

3.CSS字体属性
3.1字体系列 CSS使用font-family属性定义文本的字体系列。 p{font-family:"微软雅黑"} div{font-family:Arial,"Microsoft Yahei",微软雅黑} 3.2字体大小 css使用font-size属性定义字体大小 p{ font-size:20px; } px(像素)大小是我们网页的最常用的单…...
微信小程序 单选多选radio/checkbox 纯代码分享
单选按钮 <radio-group class"radiogroup" bindchange"radioChange"> <label class"radio" wx:for"{{items}}"> <radio value"{{item.name}}" checked"{{item.checked}}" /> {{item.value}} &…...
k8s 部署meilisearch UI
https://github.com/riccox/meilisearch-ui 拉取镜像 sudo docker pull riccoxie/meilisearch-ui:latestk8s 部署 apiVersion: v1 kind: Service metadata:name: meilisearch-uinamespace: meilisearch spec:type: NodePortselector:app: meilisearch-uiports:- port: 24900…...

gitlab 还原合并请求
事情是这样的: 菜鸡从 test 分支切了个名为 pref-art 的分支出来,发布后一机灵,发现错了,于是在本地用 git branch -d pref-art 将该分支删掉了。之后切到了 prod 分支,再切出了一个相同名称的 pref-art 分支出来&…...

ChatGPT最新版本“o3”的概要
o3简介 o3于2024年12月20日发布——也就是OpenAI 12天直播的最后一天。目前处于安全性测试阶段。它是o1的继任者,旨在处理更复杂的推理任务。o3特别针对数学、科学和编程等领域进行了优化。 o3在多项基准测试中表现出色。例如,在ARC-AGI基准测试中&…...
uniapp——App下载文件,保存、打开文件(二)
uniapp如何下载文件、保存、打开文件 时光荏苒,2024即将过去! 迈向2025,祝大家新的一年工作顺利、万事如意,少一点BUG,涨一点工资…↖(ω)↗ 文章目录 uniapp如何下载文件、保存、打开文件下载文件保存并打开文件处理 …...

Postman接口测试05|实战项目笔记
目录 一、项目接口概况 二、单接口测试-登录接口:POST 1、正例 2、反例 ①姓名未注册 ②密码错误 ③姓名为空 ④多参 ⑤少参 ⑥无参 三、批量运行测试用例 四、生成测试报告 1、Postman界面生成 2、Newman命令行生成 五、token鉴权(“…...

【paddle】初次尝试
张量 张量是 paddlepaddle, torch, tensorflow 等 python 主流机器学习包中唯一通货变量,因此应当了解其基本的功能。 张量 paddle.Tensor 与 numpy.array 的转化 import paddle as paddle import matplotlib.pyplot as plt apaddle.to_t…...

01-2023年上半年软件设计师考试java真题解析
1.真题内容 在某系统中,类 Interval(间隔) 代表由下界(lower bound(边界))上界(upper bound )定义的区间。 要求采用不同的格式显示区间范围。 如[lower bound , upper bound ]、[ lower bound … upper bound ]、[ lower bou nd - upper bound &#x…...
一文讲清楚CSS3新特性
文章目录 一文讲清楚CSS3新特性1. 新增选择器特性2. 新增的样式3. 新增布局方式 一文讲清楚CSS3新特性 1. 新增选择器特性 层次选择器(div~p)选择前面有div的p元素伪类选择器 :first-of-type 表示⼀组同级元素中其类型的第⼀个元素:last-of-type 表示⼀组同级元素中其类型的最…...

系统设计案例:设计 Spotify
https://levelup.gitconnected.com/system-design-interview-question-design-spotify-4a8a79697dda 这是一道系统设计面试题,即设计 Spotify。在真正的面试中,你通常会关注应用程序的一两个主要功能,但在本文中,我想从高层次概述…...

太速科技-633-4通道2Gsps 14bit AD采集PCie卡
4通道2Gsps 14bit AD采集PCie卡 一、板卡概述 二、性能指标 板卡功能 参数 内容 ADC 芯片型号 AD9689 路数 4路ADC, 采样率 2Gsps 数据位 14bit 数字接口 JESD204B 模拟接口 交流耦合 模拟输入 1V 连接器 6路 SMA 输入阻抗 50Ω 模拟指…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...

一些实用的chrome扩展0x01
简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序,无论是测试应用程序、搜寻漏洞还是收集情报,它们都能提升工作流程。 FoxyProxy 代理管理工具,此扩展简化了使用代理(如 Burp…...