当前位置: 首页 > news >正文

SpringBoot教程(十四) SpringBoot之集成Redis

SpringBoot教程(十四) | SpringBoot之集成Redis
  • 一、Redis集成简介
  • 二、集成步骤
    • 2.1 添加依赖
    • 2.2 添加配置
    • 2.3 项目中使用之简单使用 (举例讲解)
    • 2.4 项目中使用之工具类封装 (正式用这个)
    • 2.5 序列化 (正常都需要自定义序列化)
  • 三、分布式锁
    • (一)RedisTemplate 去实现
      • 场景一:单体应用
      • 场景二:分布式架构部署
    • (二) Redisson去实现
  • 总结

一、Redis集成简介

Redis是我们Java开发中,使用频次非常高的一个nosql数据库,数据以key-value键值对的形式存储在内存中。redis的常用使用场景,可以做缓存,分布式锁,自增序列等,使用redis的方式和我们使用数据库的方式差不多,首先我们要在自己的本机电脑或者服务器上安装一个redis的服务器,通过我们的java客户端在程序中进行集成,然后通过客户端完成对redis的增删改查操作。

redis的Java客户端类型还是很多的,常见的有jedis, redission,lettuce等,
所以我们在集成的时候,我们可以选择直接集成这些原生客户端。

但是在springBoot中更常见的方式是集成spring-data-redis,这是spring提供的一个专门用来操作redis的项目,封装了对redis的常用操作,里边主要封装了jedis和lettuce两个客户端。相当于是在他们的基础上加了一层门面。

二、集成步骤

2.1 添加依赖

添加redis所需依赖:(在 Spring Boot 2.x及以后的版本中,spring-boot-starter-data-redis 默认使用的就是lettuce这个客户端)

<!-- 集成redis依赖  -->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

完整pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.lsqingfeng.springboot</groupId><artifactId>springboot-learning</artifactId><version>1.0.0</version><properties><maven.compiler.source>8</maven.compiler.source><maven.compiler.target>8</maven.compiler.target></properties><dependencyManagement><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-dependencies</artifactId><version>2.6.2</version><type>pom</type><scope>import</scope></dependency></dependencies></dependencyManagement><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!-- https://mvnrepository.com/artifact/org.projectlombok/lombok --><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.22</version><scope>provided</scope></dependency><!-- mybatis-plus 所需依赖  --><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.1</version></dependency><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-generator</artifactId><version>3.5.1</version></dependency><dependency><groupId>org.freemarker</groupId><artifactId>freemarker</artifactId><version>2.3.31</version></dependency><!-- 开发热启动 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><optional>true</optional></dependency><!-- MySQL连接 --><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><scope>runtime</scope></dependency><!-- 集成redis依赖  --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency></dependencies>
</project>

注意点:如果我们想要使用jedis客户端怎么办呢?就需要排除lettuce这个依赖,再引入jedis的相关依赖就可以了。

<dependency>  <groupId>org.springframework.boot</groupId>  <artifactId>spring-boot-starter-data-redis</artifactId>  <exclusions>  <exclusion>  <groupId>io.lettuce</groupId>  <artifactId>lettuce-core</artifactId>  </exclusion>  </exclusions>  
</dependency><dependency>  <groupId>redis.clients</groupId>  <artifactId>jedis</artifactId>  <version>你的Jedis版本号</version>  
</dependency>

两者的区别

Lettuce更适合需要异步处理、线程安全以及支持哨兵和集群模式的场景(线程安全);
Jedis则更适合简单的同步操作,以及在不需要哨兵和集群模式的场景中使用(线程不安全)。

2.2 添加配置

然后我们需要配置连接redis所需的账号密码等信息,这里大家要提前安装好redis,保证我们的本机程序可以连接到我们的redis, 如果不知道redis如何安装,可以参考文章: [Linux系统安装redis6.0.5] blog.csdn.net/lsqingfeng/…

常规配置如下: 在application.yml配置文件中配置 redis的连接信息

spring:redis:host: localhostport: 6379password: 123456database: 0

如果有其他配置放到一起:

server:port: 19191spring:datasource:driver-class-name: com.mysql.cj.jdbc.Driverurl: jdbc:mysql://localhost:3306/springboot_learning?serverTimezone=Asia/Shanghai&characterEncoding=utf-8username: rootpassword: rootredis:host: localhostport: 6379password: 123456database: 0lettuce:pool:max-idle: 16max-active: 32min-idle: 8devtools:restart:enable: truethird:weather:url: http://www.baidu.comport: 8080username: testcities:- 北京- 上海- 广州list[0]: aaalist[1]: bbblist[2]: ccc

这样我们就可以直接在项目当中操作redis了。如果使用的是集群,那么使用如下配置方式:

spring:redis:password: 123456cluster:nodes: 10.255.144.115:7001,10.255.144.115:7002,10.255.144.115:7003,10.255.144.115:7004,10.255.144.115:7005,10.255.144.115:7006max-redirects: 3

但是有的时候我们想要给我们的redis客户端配置上连接池。
就像我们连接mysql的时候,也会配置连接池一样,目的就是增加对于数据连接的管理,提升访问的效率,也保证了对资源的合理利用。那么我们如何配置连接池呢,这里大家一定要注意了,很多网上的文章中,介绍的方法可能由于版本太低,都不是特别的准确。
比如很多人使用spring.redis.pool来配置,这个是不对的(不清楚是不是老版本是这样的配置的,但是在springboot-starter-data-redis中这种写法不对)。首先是配置文件,由于我们使用的lettuce客户端,所以配置的时候,在spring.redis下加上lettuce再加上pool来配置,具体如下;

spring:redis:host: 10.255.144.111port: 6379password: 123456database: 0lettuce:pool:max-idle: 16max-active: 32min-idle: 8

如果使用的是jedis,就把lettuce换成jedis(同时要注意依赖也是要换的)。

但是仅仅这在配置文件中加入,其实连接池是不会生效的。这里大家一定要注意,很多同学在配置文件上加上了这段就以为连接池已经配置好了,其实并没有,还少了最关键的一步,就是要导入一个依赖,不导入的话,这么配置也没有用。

<dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId>
</dependency>

之后,连接池才会生效。我们可以做一个对比。 在导包前后,观察RedisTemplate对象的值就可以看出来。

导入之前:

导入之后:

导入之后,我们的连接池信息才有值,这也印证了我们上面的结论。

具体的配置信息我们可以看一下源代码,源码中使用RedisProperties 这个类来接收redis的配置参数。

2.3 项目中使用之简单使用 (举例讲解)

我们的配置工作准备就绪以后,我们就可以在项目中操作redis了,操作的话,使用spring-data-redis中为我们提供的 RedisTemplate 这个类,就可以操作了。我们先举个简单的例子,插入一个键值对(值为string)。

package com.lsqingfeng.springboot.controller;import com.lsqingfeng.springboot.base.Result;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;/*** @className: RedisController* @description:* @author: sh.Liu* @date: 2022-03-08 14:28*/
@RestController
@RequestMapping("redis")
public class RedisController {private final RedisTemplate redisTemplate;public RedisController(RedisTemplate redisTemplate) {this.redisTemplate = redisTemplate;}@GetMapping("save")public Result save(String key, String value){redisTemplate.opsForValue().set(key, value);return Result.success();}}

2.4 项目中使用之工具类封装 (正式用这个)

package com.lsqingfeng.springboot.utils;import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;/*** @className: RedisUtil* @description:* @author: sh.Liu* @date: 2022-03-09 14:07*/
@Component
public class RedisUtil {@Autowiredprivate RedisTemplate redisTemplate;/*** 给一个指定的 key 值附加过期时间** @param key* @param time* @return*/public boolean expire(String key, long time) {return redisTemplate.expire(key, time, TimeUnit.SECONDS);}/*** 根据key 获取过期时间** @param key* @return*/public long getTime(String key) {return redisTemplate.getExpire(key, TimeUnit.SECONDS);}/*** 根据key 获取过期时间** @param key* @return*/public boolean hasKey(String key) {return redisTemplate.hasKey(key);}/*** 移除指定key 的过期时间** @param key* @return*/public boolean persist(String key) {return redisTemplate.boundValueOps(key).persist();}//- - - - - - - - - - - - - - - - - - - - -  String类型 - - - - - - - - - - - - - - - - - - - -/*** 根据key获取值** @param key 键* @return 值*/public Object get(String key) {return key == null ? null : redisTemplate.opsForValue().get(key);}/*** 将值放入缓存** @param key   键* @param value 值* @return true成功 false 失败*/public void set(String key, String value) {redisTemplate.opsForValue().set(key, value);}/*** 将值放入缓存并设置时间** @param key   键* @param value 值* @param time  时间(秒) -1为无期限* @return true成功 false 失败*/public void set(String key, String value, long time) {if (time > 0) {redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);} else {redisTemplate.opsForValue().set(key, value);}}/*** 批量添加 key (重复的键会覆盖)** @param keyAndValue*/public void batchSet(Map<String, String> keyAndValue) {redisTemplate.opsForValue().multiSet(keyAndValue);}/*** 批量添加 key-value 只有在键不存在时,才添加* map 中只要有一个key存在,则全部不添加** @param keyAndValue*/public void batchSetIfAbsent(Map<String, String> keyAndValue) {redisTemplate.opsForValue().multiSetIfAbsent(keyAndValue);}/*** 对一个 key-value 的值进行加减操作,* 如果该 key 不存在 将创建一个key 并赋值该 number* 如果 key 存在,但 value 不是长整型 ,将报错** @param key* @param number*/public Long increment(String key, long number) {return redisTemplate.opsForValue().increment(key, number);}/*** 对一个 key-value 的值进行加减操作,* 如果该 key 不存在 将创建一个key 并赋值该 number* 如果 key 存在,但 value 不是 纯数字 ,将报错** @param key* @param number*/public Double increment(String key, double number) {return redisTemplate.opsForValue().increment(key, number);}//- - - - - - - - - - - - - - - - - - - - -  set类型 - - - - - - - - - - - - - - - - - - - -/*** 将数据放入set缓存** @param key 键* @return*/public void sSet(String key, String value) {redisTemplate.opsForSet().add(key, value);}/*** 获取变量中的值** @param key 键* @return*/public Set<Object> members(String key) {return redisTemplate.opsForSet().members(key);}/*** 随机获取变量中指定个数的元素** @param key   键* @param count 值* @return*/public void randomMembers(String key, long count) {redisTemplate.opsForSet().randomMembers(key, count);}/*** 随机获取变量中的元素** @param key 键* @return*/public Object randomMember(String key) {return redisTemplate.opsForSet().randomMember(key);}/*** 弹出变量中的元素** @param key 键* @return*/public Object pop(String key) {return redisTemplate.opsForSet().pop("setValue");}/*** 获取变量中值的长度** @param key 键* @return*/public long size(String key) {return redisTemplate.opsForSet().size(key);}/*** 根据value从一个set中查询,是否存在** @param key   键* @param value 值* @return true 存在 false不存在*/public boolean sHasKey(String key, Object value) {return redisTemplate.opsForSet().isMember(key, value);}/*** 检查给定的元素是否在变量中。** @param key 键* @param obj 元素对象* @return*/public boolean isMember(String key, Object obj) {return redisTemplate.opsForSet().isMember(key, obj);}/*** 转移变量的元素值到目的变量。** @param key     键* @param value   元素对象* @param destKey 元素对象* @return*/public boolean move(String key, String value, String destKey) {return redisTemplate.opsForSet().move(key, value, destKey);}/*** 批量移除set缓存中元素** @param key    键* @param values 值* @return*/public void remove(String key, Object... values) {redisTemplate.opsForSet().remove(key, values);}/*** 通过给定的key求2个set变量的差值** @param key     键* @param destKey 键* @return*/public Set<Set> difference(String key, String destKey) {return redisTemplate.opsForSet().difference(key, destKey);}//- - - - - - - - - - - - - - - - - - - - -  hash类型 - - - - - - - - - - - - - - - - - - - -/*** 加入缓存** @param key 键* @param map 键* @return*/public void add(String key, Map<String, String> map) {redisTemplate.opsForHash().putAll(key, map);}/*** 获取 key 下的 所有  hashkey 和 value** @param key 键* @return*/public Map<Object, Object> getHashEntries(String key) {return redisTemplate.opsForHash().entries(key);}/*** 验证指定 key 下 有没有指定的 hashkey** @param key* @param hashKey* @return*/public boolean hashKey(String key, String hashKey) {return redisTemplate.opsForHash().hasKey(key, hashKey);}/*** 获取指定key的值string** @param key  键* @param key2 键* @return*/public String getMapString(String key, String key2) {return redisTemplate.opsForHash().get("map1", "key1").toString();}/*** 获取指定的值Int** @param key  键* @param key2 键* @return*/public Integer getMapInt(String key, String key2) {return (Integer) redisTemplate.opsForHash().get("map1", "key1");}/*** 弹出元素并删除** @param key 键* @return*/public String popValue(String key) {return redisTemplate.opsForSet().pop(key).toString();}/*** 删除指定 hash 的 HashKey** @param key* @param hashKeys* @return 删除成功的 数量*/public Long delete(String key, String... hashKeys) {return redisTemplate.opsForHash().delete(key, hashKeys);}/*** 给指定 hash 的 hashkey 做增减操作** @param key* @param hashKey* @param number* @return*/public Long increment(String key, String hashKey, long number) {return redisTemplate.opsForHash().increment(key, hashKey, number);}/*** 给指定 hash 的 hashkey 做增减操作** @param key* @param hashKey* @param number* @return*/public Double increment(String key, String hashKey, Double number) {return redisTemplate.opsForHash().increment(key, hashKey, number);}/*** 获取 key 下的 所有 hashkey 字段** @param key* @return*/public Set<Object> hashKeys(String key) {return redisTemplate.opsForHash().keys(key);}/*** 获取指定 hash 下面的 键值对 数量** @param key* @return*/public Long hashSize(String key) {return redisTemplate.opsForHash().size(key);}//- - - - - - - - - - - - - - - - - - - - -  list类型 - - - - - - - - - - - - - - - - - - - -/*** 在变量左边添加元素值** @param key* @param value* @return*/public void leftPush(String key, Object value) {redisTemplate.opsForList().leftPush(key, value);}/*** 获取集合指定位置的值。** @param key* @param index* @return*/public Object index(String key, long index) {return redisTemplate.opsForList().index("list", 1);}/*** 获取指定区间的值。** @param key* @param start* @param end* @return*/public List<Object> range(String key, long start, long end) {return redisTemplate.opsForList().range(key, start, end);}/*** 把最后一个参数值放到指定集合的第一个出现中间参数的前面,* 如果中间参数值存在的话。** @param key* @param pivot* @param value* @return*/public void leftPush(String key, String pivot, String value) {redisTemplate.opsForList().leftPush(key, pivot, value);}/*** 向左边批量添加参数元素。** @param key* @param values* @return*/public void leftPushAll(String key, String... values) {
//        redisTemplate.opsForList().leftPushAll(key,"w","x","y");redisTemplate.opsForList().leftPushAll(key, values);}/*** 向集合最右边添加元素。** @param key* @param value* @return*/public void leftPushAll(String key, String value) {redisTemplate.opsForList().rightPush(key, value);}/*** 向左边批量添加参数元素。** @param key* @param values* @return*/public void rightPushAll(String key, String... values) {//redisTemplate.opsForList().leftPushAll(key,"w","x","y");redisTemplate.opsForList().rightPushAll(key, values);}/*** 向已存在的集合中添加元素。** @param key* @param value* @return*/public void rightPushIfPresent(String key, Object value) {redisTemplate.opsForList().rightPushIfPresent(key, value);}/*** 向已存在的集合中添加元素。** @param key* @return*/public long listLength(String key) {return redisTemplate.opsForList().size(key);}/*** 移除集合中的左边第一个元素。** @param key* @return*/public void leftPop(String key) {redisTemplate.opsForList().leftPop(key);}/*** 移除集合中左边的元素在等待的时间里,如果超过等待的时间仍没有元素则退出。** @param key* @return*/public void leftPop(String key, long timeout, TimeUnit unit) {redisTemplate.opsForList().leftPop(key, timeout, unit);}/*** 移除集合中右边的元素。** @param key* @return*/public void rightPop(String key) {redisTemplate.opsForList().rightPop(key);}/*** 移除集合中右边的元素在等待的时间里,如果超过等待的时间仍没有元素则退出。** @param key* @return*/public void rightPop(String key, long timeout, TimeUnit unit) {redisTemplate.opsForList().rightPop(key, timeout, unit);}
}

2.5 序列化 (正常都需要自定义序列化)

Redis本身提供了一下一种序列化的方式:

  • GenericToStringSerializer: 可以将任何对象泛化为字符串并序列化
  • Jackson2JsonRedisSerializer: 跟JacksonJsonRedisSerializer实际上是一样的
  • JacksonJsonRedisSerializer: 序列化object对象为json字符串
  • JdkSerializationRedisSerializer: 序列化java对象
  • StringRedisSerializer: 简单的字符串序列化

如果我们存储的是String类型默认使用的是StringRedisSerializer 这种序列化方式。
如果我们存储的是对象默认使用的是 JdkSerializationRedisSerializer,也就是Jdk的序列化方式(通过ObjectOutputStream和ObjectInputStream实现,缺点是我们无法直观看到存储的对象内容)。

通过观察RedisTemplate的源码我们就可以看出来,默认使用的是JdkSerializationRedisSerializer. 这种序列化最大的问题就是存入对象后,我们很难直观看到存储的内容,很不方便我们排查问题:

而一般我们最经常使用的对象序列化方式是: Jackson2JsonRedisSerializer

设置序列化方式的主要方法就是我们在配置类中,自己来创建RedisTemplate对象,并在创建的过程中指定对应的序列化方式。

@Configuration  
public class RedisConfig {  // 定义一个Bean,名称为"redisTemplate",返回类型为RedisTemplate<String, Object>  @Bean(name = "redisTemplate")  public RedisTemplate<String, Object> getRedisTemplate(RedisConnectionFactory factory) {  // 创建一个新的RedisTemplate实例,用于操作Redis  RedisTemplate<String, Object> redisTemplate = new RedisTemplate<String, Object>();  // 设置RedisTemplate使用的连接工厂,以便它能够连接到Redis服务器  redisTemplate.setConnectionFactory(factory);  // 创建一个StringRedisSerializer实例,用于序列化Redis的key为字符串  StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();  // 创建一个ObjectMapper实例,用于处理JSON的序列化和反序列化  ObjectMapper objectMapper = new ObjectMapper();  // 设置ObjectMapper的属性访问级别,以便能够序列化对象的所有属性  objectMapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);  // 启用默认的类型信息,以便在反序列化时能够知道对象的实际类型  // 注意:这里使用了新的方法替换了过期的enableDefaultTyping方法  // 方法过期,改为下面代码  // objectMapper.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);  objectMapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance,  ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY); // 创建一个Jackson2JsonRedisSerializer实例,用于序列化Redis的value为JSON格式  Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);   // 设置Jackson2JsonRedisSerializer使用的ObjectMapper  jackson2JsonRedisSerializer.setObjectMapper(objectMapper);  // 设置RedisTemplate的key序列化器为stringRedisSerializer  redisTemplate.setKeySerializer(stringRedisSerializer); // key的序列化类型  // 设置RedisTemplate的value序列化器为jackson2JsonRedisSerializer  redisTemplate.setValueSerializer(jackson2JsonRedisSerializer); // value的序列化类型  // 设置RedisTemplate的hash key序列化器为stringRedisSerializer  redisTemplate.setHashKeySerializer(stringRedisSerializer);  // key的序列化类型  // 设置RedisTemplate的hash value序列化器为jackson2JsonRedisSerializer  redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);   // value的序列化类型  // 调用RedisTemplate的afterPropertiesSet方法,该方法会执行一些初始化操作,比如检查序列化器是否设置等  redisTemplate.afterPropertiesSet();  // 返回配置好的RedisTemplate实例  return redisTemplate;  }  
}

当出现以下报错时

setObjectMapper(com.fasterxml.jackson.databind.ObjectMapper)' is deprecated since version 3.0 and marked for removal

官方给出的解释为该接口已弃用,如果要使用原接口功能对Jackson2JsonRedisSerializer配置对象映射器,则使用对应的构造函数。

说明你的 Spring Data Redis 版本是3+了,redis设置序列化的操作就要换成以下

把上面的这两行代码
// 创建一个Jackson2JsonRedisSerializer实例,用于序列化Redis的value为JSON格式  
Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);   
// 设置Jackson2JsonRedisSerializer使用的ObjectMapper  
jackson2JsonRedisSerializer.setObjectMapper(objectMapper);  换成以下这一行代码
Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(objectMapper, Object.class);

这样使用的时候,就会按照我们设置的json序列化方式进行存储,我们也可以在redis中查看内容的时候方便的查看到属性值。

三、分布式锁

(一)RedisTemplate 去实现

场景一:单体应用

单机数据一致性架构如下图所示:多个可客户访问同一个服务器,连接同一个数据库。

在这里插入图片描述
场景描述:客户端模拟购买商品过程,在Redis中设定库存总数剩100个,多个客户端同时并发购买。

@RestController
public class IndexController1 {@AutowiredStringRedisTemplate template;@RequestMapping("/buy1")public String index(){// Redis中存有goods:001号商品,数量为100String result = template.opsForValue().get("goods:001");// 获取到剩余商品数int total = result == null ? 0 : Integer.parseInt(result);if( total > 0 ){// 剩余商品数大于0 ,则进行扣减int realTotal = total -1;// 将商品数回写数据库template.opsForValue().set("goods:001",String.valueOf(realTotal));System.out.println("购买商品成功,库存还剩:"+realTotal +"件, 服务端口为8001");return "购买商品成功,库存还剩:"+realTotal +"件, 服务端口为8001";}else{System.out.println("购买商品失败,服务端口为8001");}return "购买商品失败,服务端口为8001";}
}

使用Jmeter模拟高并发场景,测试结果如下
在这里插入图片描述
测试结果出现多个用户购买同一商品,发生了数据不一致问题!

解决办法:单体应用的情况下,对并发的操作进行加锁操作,保证对数据的操作具有原子性

  • synchronized
  • ReentrantLock

synchronized (自动获取锁,并在退出时自动释放锁)去实现如下

@RestController  
public class IndexController2 {  @Autowired  StringRedisTemplate template;  @RequestMapping("/buy2")  public synchronized String index() {  String result = template.opsForValue().get("goods:001");  int total = result == null ? 0 : Integer.parseInt(result);  if (total > 0) {  int realTotal = total - 1;  template.opsForValue().set("goods:001", String.valueOf(realTotal));  System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");  return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";  } else {  System.out.println("购买商品失败,服务端口为8001");  }  return "购买商品失败,服务端口为8001";  }  
}

ReentrantLock(需要手动获取锁,并在退出时手动释放锁) 去实现
在针对单体应用时的操作(ReentrantLock去实现相对来说好一点,因为颗粒度更细)

@RestController
public class IndexController2 {// 使用ReentrantLock锁解决单体应用的并发问题Lock lock = new ReentrantLock();@AutowiredStringRedisTemplate template;@RequestMapping("/buy2")public String index() {lock.lock();try {String result = template.opsForValue().get("goods:001");int total = result == null ? 0 : Integer.parseInt(result);if (total > 0) {int realTotal = total - 1;template.opsForValue().set("goods:001", String.valueOf(realTotal));System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";} else {System.out.println("购买商品失败,服务端口为8001");}} catch (Exception e) {lock.unlock();} finally {lock.unlock();}return "购买商品失败,服务端口为8001";}
}

100个商品100个人买最后剩余为0

场景二:分布式架构部署

提供两个服务,端口分别为8001、8002,连接同一个Redis服务,在服务前面有一台Nginx作为负载均衡
在这里插入图片描述

两台服务代码相同,只是端口不同

将8001、8002两个服务启动,每个服务依然用ReentrantLock加锁,用Jmeter做并发测试,发现会出现数据一致性问题!

在这里插入图片描述

我这边直接写最终版本(存粹的只用redis)

要求:
1.保证自己加的锁,自己删自己的(由以下的uuid生成value去控制,以防止其他的线程把自己的删除了或者自己删除了别人的)

  • REDIS_LOCK: 这是你想要设置的Redis键(Key)。在分布式锁的场景中,它通常是一个唯一的字符串,用于标识某个资源或操作。
  • value: 这是你想要设置的Redis值(Value)。在分布式锁的场景中,这通常是一个表示锁持有者的唯一标识,例如线程ID或进程ID。
  • 10L: 这是锁的过期时间,单位是秒。这意味着如果持有锁的客户端在这个时间内没有释放锁(例如,由于崩溃或网络问题),那么锁将自动过期,其他客户端可以获取它。这是一个重要的安全机制,可以防止死锁。
  • TimeUnit.SECONDS: 这是时间单位。TimeUnit是一个枚举类型,表示时间的单位,如毫秒、秒、分钟等。在这里,我们使用SECONDS表示过期时间是以秒为单位的。

redis事务或lua脚本(lua脚本的执行是原子的),如下

@RestController
public class IndexController7 {public static final String REDIS_LOCK = "lock";@AutowiredStringRedisTemplate template;@RequestMapping("/buy7")public String index(){// 每个人进来先要进行加锁,key值为"lock"String value = UUID.randomUUID().toString().replace("-","");try{// 为key加一个过期时间Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS);// 加锁失败if(!flag){return "抢锁失败!";}System.out.println( value+ " 抢锁成功");String result = template.opsForValue().get("goods:001");int total = result == null ? 0 : Integer.parseInt(result);if (total > 0) {// 如果在此处需要调用其他微服务,处理时间较长。。。int realTotal = total - 1;template.opsForValue().set("goods:001", String.valueOf(realTotal));System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";} else {System.out.println("购买商品失败,服务端口为8001");}return "购买商品失败,服务端口为8001";}finally {// 谁加的锁,谁才能删除// 也可以使用redis事务// https://redis.io/commands/set// 使用Lua脚本,进行锁的删除Jedis jedis = null;try{jedis = RedisUtils.getJedis();String script = "if redis.call('get',KEYS[1]) == ARGV[1] " +"then " +"return redis.call('del',KEYS[1]) " +"else " +"   return 0 " +"end";Object eval = jedis.eval(script, Collections.singletonList(REDIS_LOCK), Collections.singletonList(value));if("1".equals(eval.toString())){System.out.println("-----del redis lock ok....");}else{System.out.println("-----del redis lock error ....");}}catch (Exception e){}finally {if(null != jedis){jedis.close();}}// redis事务
//            while(true){
//                template.watch(REDIS_LOCK);
//                if(template.opsForValue().get(REDIS_LOCK).equalsIgnoreCase(value)){
//                    template.setEnableTransactionSupport(true);
//                    template.multi();
//                    template.delete(REDIS_LOCK);
//                    List<Object> list = template.exec();
//                    if(list == null){
//                        continue;
//                    }
//                }
//                template.unwatch();
//                break;
//            }}}
}

(二) Redisson去实现

先引入maven依赖(redisson和springboot的集成包)

<!-- 添加Redisson依赖 -->  
<dependency><groupId>org.redisson</groupId><artifactId>redisson-spring-boot-starter</artifactId><version>3.15.0</version><exclusions><exclusion><groupId>org.redisson</groupId><!-- 默认是 Spring Data Redis v.2.3.x ,所以排除掉--><artifactId>redisson-spring-data-23</artifactId></exclusion></exclusions>
</dependency>

网上其他的有可能是引入

<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.6.1</version>
</dependency>

根据以上例子用redisson去实现分布式锁,更加nice
使用Redisson的getLock方法时,你实际上是在使用RedLock(红锁)算法来获取分布式锁

@RestController
public class IndexController8 {public static final String REDIS_LOCK = "lock";@AutowiredStringRedisTemplate template;@AutowiredRedisson redisson;@RequestMapping("/buy8")public String index(){//创建锁“lock”RLock lock = redisson.getLock(REDIS_LOCK);//加锁lock.lock();try{String result = template.opsForValue().get("goods:001");int total = result == null ? 0 : Integer.parseInt(result);if (total > 0) {// 如果在此处需要调用其他微服务,处理时间较长。。。int realTotal = total - 1;template.opsForValue().set("goods:001", String.valueOf(realTotal));System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001");return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001";} else {System.out.println("购买商品失败,服务端口为8001");}return "购买商品失败,服务端口为8001";}finally {//避免竞态条件,不要if判断检查锁的状态。需直接使用 lock.unlock();
//            if(lock.isLocked() && lock.isHeldByCurrentThread()){
//                lock.unlock();
//            }lock.unlock();}}
}

总结

实际为了保证redis高可用,redis一般会集群部署。

redis集群解决方案,使用redlock解决(redlock的特点如下):

  • 顺序向5个节点请求加锁(5个节点相互独立,没任何关系)
  • 根据超时时间来判断是否要跳过该节点
  • 如果大于等于3节点加锁成功,并且使用时间小于锁有效期,则加锁成功,否则获取锁失败,解锁

参考文章
【1】SpringBoot教程(十四) | SpringBoot集成Redis(全网最全)
【2】Redis实现分布式锁方法详细
【3】Redis实现分布式锁
【4】陪你一起学redis(十一)——redis分布式锁

相关文章:

SpringBoot教程(十四) SpringBoot之集成Redis

SpringBoot教程&#xff08;十四&#xff09; | SpringBoot之集成Redis 一、Redis集成简介二、集成步骤 2.1 添加依赖2.2 添加配置2.3 项目中使用之简单使用 &#xff08;举例讲解&#xff09;2.4 项目中使用之工具类封装 &#xff08;正式用这个&#xff09;2.5 序列化 &…...

RSI和CCI指标组合:如何评估需求供应区?昂首资本实战指南

在市场分析中&#xff0c;分笔成交点数量提供了一个有价值的视角&#xff0c;帮助我们识别需求和供应区。通过这些数据&#xff0c;我们可以假设供需区域的参数与主要振荡器中的区域参数类似。以RSI和CCI为例&#xff0c;这些指标不仅能够反映市场的超买和超卖情况&#xff0c;…...

PTPVT 插值说明

文章目录 PTPVT 插值说明 PTPVT 插值说明PVT Hermite插值PVT 三次多项式插值PT 插值Sin轨迹测试结果PVT Hermite插值结果PVT 三次多项式插值结果PT 插值结果 用户轨迹测试结果PVT Hermite插值结果PT 插值结果 PTPVT 插值说明 PT模式&#xff1a; 位置-时间路径插值算法。 PVT模…...

Spring MVC和servlet

1.Spring MVC是Spring框架的一个扩展 2.Spring MVC工作流程 1、用户发送请求至前端控制器DispatcherServlet。 2、DispatcherServlet收到请求调用HandlerMapping处理器映射器。 3、处理器映射器找到具体的处理器(可以根据xml配置、注解进行查找)&#xff0c;生成处理器对象及…...

java下载文件流,不生成中间文件。

java下载文件流&#xff0c;不生成中间文件。 代码设计&#xff1a;代码实现 代码设计&#xff1a; 从前端获取的数据经过后端加工后&#xff0c;生成文件流&#xff0c;并返回前端&#xff0c;&#xff08;不生成中间文件&#xff0c;注意内存&#xff0c;记得关闭流&#xf…...

计算机专业考研 408 学科学习方法

计算机专业考研 408 学科涵盖数据结构、计算机组成原理、操作系统和计算机网络四门核心课程&#xff0c;内容多且难度大。但只要掌握科学的学习方法&#xff0c;便能化繁为简&#xff0c;稳步提升。以下为大家详细介绍 408 学科的学习方法。 一、基础夯实阶段&#xff1a;全面…...

mapper文件的解释

<?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd"> <mapper namespace"com.ruoyi.system.mapper.Jianai…...

常见协议的高危软件漏洞信息

HTTP 协议 协议 | 软件 | 漏洞编号 | 漏洞描述 Apache Log4j CVE-2021-45105 | Apache Log4j拒绝服务攻击漏洞 XWiki Platform CVE-2023-26477 | XWiki Platform存在安全漏洞&#xff0c;该漏洞源于可以通过URL请求参数结合其他参数注入任意脚本宏 Microsoft Windows CVE-20…...

Mediatek Android13 ROM定制

目录 1、系统签名 2、默认关闭WIFI 3、默认关闭Bluetooth 4、默认关闭NFC 5、移除物理键盘支持 6、禁止 ANR、崩溃等的对话框显示 7、修改默认壁纸 8、取消USB PTP MTP MIDI等支持 9、设置Screen Lock默认为None 10、设置Data&time自动 11、设置特定时区 12、设…...

RedisInsight:企业级 Redis 管理与分析工具

1 介绍 RedisInsight 是一款专为企业级用户设计的 Redis 管理与分析工具,旨在简化 Redis 数据库的管理和优化操作。通过直观的图形化界面和强大的功能集,RedisInsight 提供了全面的监控、诊断、性能优化以及数据管理能力,帮助企业和开发团队更高效地管理和运维 Redis 实例。…...

c# 快捷键模块

文章目录 命名空间和类类成员静态成员 静态方法GenerateHotkeyIdWndProcGetWindowHandleAndSourceRegisterUnregister 静态方法&#xff08;外部调用&#xff09;RegisterHotKey 和 UnRegisterHotKey 委托HotKeyCallbackHandler 枚举HotkeyModifiers 应用示例 using System; us…...

【笔记】增值税计算笔记

增值税计算笔记 设 进价为 α \alpha α元 出价为 α τ \alpha\tau ατ元 增值税率为 r r r ∵ { 进 项 税 α 1 r r 销 项 税 α τ 1 r r 增 值 税 销 项 税 − 进 项 税 ∴ 增 值 税 α ( τ − 1 ) r 1 r \because \left\{ \begin{aligned}进项税 &\frac{…...

请解释 JavaScript 中的闭包,以及它的优缺点和常见使用场景?

闭包&#xff08;Closure&#xff09;是什么&#xff1f; 闭包是JavaScript中的一个重要概念&#xff0c;指的是一个函数能够记住并访问它的词法作用域&#xff0c;即使这个函数在其词法作用域之外执行。 换句话说&#xff0c;闭包使得函数可以“记住”它被创建时的环境。 闭…...

SpringBoot 集成 Caffeine 实现本地缓存

目录 1、Caffeine 简介 1.1、Caffeine 简介1.2、对比 Guava cache 的性能主要优化项1.3、常见的缓存淘汰算法1.4、SpringBoot 集成 Caffeine 两种方式 2、SpringBoot 集成 Caffeine 方式一 2.1、缓存加载策略 2.1.1、手动加载2.1.2、自动加载【Loading Cache】2.1.3、异步加载…...

druid连接池参数配置

最近发现生产环境经常有数据库连接超时的问题&#xff0c;排查发现是druid连接池参数设置不合理导致 总结问题如下&#xff1a; 为了防止僵尸连接&#xff0c;k8s ipvs做了连接超时限制&#xff0c;如果TCP连接闲置超过900s(15分钟)&#xff0c;客户端再尝试通过这个连接去发起…...

【OceanBase】通过 OceanBase 的向量检索技术构建图搜图应用

文章目录 一、向量检索概述1.1 关键概念① 非结构化数据② 向量③ 向量嵌入(Embedding)④ 向量相似性检索 1.2 应用场景 二、向量检索核心功能三、图搜图架构四、操作步骤4.1 使用 Docker 部署 OceanBase 数据库4.2 测试OceanBase数据库连通性4.3 开启数据库向量检索功能4.4 克…...

Linux 安装运行gatk的教程

1.下载安装 wget https://github.com/broadinstitute/gatk/releases/download/4.1.8.1/gatk-4.1.8.1.zip2.解压 unzip *.zip3.查看 gatk --help 如下显示表示安装成功&#xff1a; 注意&#xff1a;仅限在该包所在位置的路径下能使用...

什么是unit l2 norm

1. L2 Norm 定义 L2 norm&#xff08;或称欧几里得范数&#xff09;是用来衡量一个向量的“长度”或“大小”的一种方式。在 n 维空间中&#xff0c;给定一个向量V(V1,V2,…,Vn)&#xff0c;其 L2 norm 定义为&#xff1a; 也可以理解为该向量与原点之间的欧几里得距离。 2…...

手写顺序流程图组件

效果图 完整代码 <template><div><div class"container" :style"{ width: ${spacingX * (colNum - 1) itemWidth * colNum}px }"><divv-for"(item, i) in recordList":key"i"class"list-box":style&…...

适配器模式概述

大体介绍 适配器模式&#xff08;Adapter Pattern&#xff09;是一种结构型设计模式&#xff0c;其核心目的是通过提供一个适配器类来使得原本接口不兼容的类可以一起工作。它通过将一个类的接口转换成客户端所期望的接口&#xff0c;使得原本因接口不兼容而无法一起工作的类可…...

Logo设计免费生成器:轻松设计个性化标志

在当今这个信息爆炸的时代&#xff0c;一个好的Logo标志已经成为品牌和企业的名片。它不仅是品牌的象征&#xff0c;也是企业文化和价值观的体现。然而&#xff0c;很多初创企业或小型团队往往因为预算有限&#xff0c;无法请专业的设计师来打造专属的Logo。这时候&#xff0c;…...

智能停车场车牌识别计费系统

作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验&#xff0c;被多个学校常年聘为校外企业导师&#xff0c;指导学生毕业设计并参与学生毕业答辩指导&#xff0c;…...

谷歌开通第三方平台OAuth登录及Java对接步骤

调研起因&#xff1a; 当然还是因为手头的海外项目&#xff0c;用户注册通常要用邮箱&#xff0c;正常流程需要给用户邮箱发送验证码&#xff0c;再让用户输入密码进行注册。 为了简化流程&#xff0c;让用户使用谷歌邮箱一键完成注册或登录&#xff0c; 我们直接获取谷歌邮箱、…...

人体:精妙绝伦的生命之躯

人体&#xff1a;精妙绝伦的生命之躯 在浩瀚宇宙中&#xff0c;人体犹如一颗璀璨的明珠&#xff0c;是自然界最伟大的杰作之一。它是一个高度复杂且精妙绝伦的有机系统&#xff0c;承载着生命的奥秘与奇迹&#xff0c;展现出令人惊叹的适应性、协调性和自我修复能力。从微观的…...

python的urllib模块和http模块

1.python的urllib库用于操作网页&#xff0c;并对网页内容进行处理 urllib包有如下模块&#xff1a; urllib.request&#xff1a;打开和读取URL urllib.error&#xff1a; 包含urllib.request抛出的异常 urllib.parse&#xff1a; 解析URL urllib.robotparser&#xff1…...

Java [后端] 开发日常记录(1)

目录 1、常用的注解 2、对字符串的处理 3、对JSON串的处理 -- The End -- 详细如下&#xff1a; 1、常用的注解 若返回的字段中有NUll&#xff0c;则不返回 JsonInclude(value JsonInclude.Include.NON_NULL) //在实体类中添加这个注解 JsonInclude(JsonInclude.Include.NON…...

jetbrain 安装 copilot

问题一&#xff1a;Sign in failed. Reason: Request signInInitiate failed with message: Request to /github.com/login/device/code> timed out after 30000ms, request id: 11, error code: -32603 解决方案&#xff1a; 参考资料&#xff1a;https://github.com/orgs/…...

万里数据库GreatSQL监控解析

GreatSQL是MySQL的一个分支&#xff0c;专注于提升MGR&#xff08;MySQL Group Replication&#xff09;的可靠性及性能。乐维监控平台可以有效地监控GreatSQL&#xff0c;帮助用户及时发现并解决潜在的性能问题。 通过在GreatSQL服务器上安装监控代理&#xff0c;收集数据库性…...

OpenCV-Python实战(9)——滤波降噪

一、均值滤波器 cv2.blur() img cv2.blur(src*,ksize*,anchor*,borderType*)img&#xff1a;目标图像。 src&#xff1a;原始图像。 ksize&#xff1a;滤波核大小&#xff0c;&#xff08;width&#xff0c;height&#xff09;。 anchor&#xff1a;滤波核锚点&#xff0c…...

Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击

Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击 CIFAR数据集DTA介绍算法流程 DTA代码实现DTA算法实现攻击效果 代码汇总dta.pytrain.pyadvtest.py 之前已经针对CIFAR10训练了多种分类器&#xff1a; Pytorch | 从零构建AlexNet对CIFAR10进行分类 Pytorch | 从零构建…...