当前位置: 首页 > news >正文

torch.nn.functional的用法

文章目录

  • 介绍
  • 激活函数
    • 示例
  • 损失函数
    • 示例
  • 卷积操作
    • 示例
  • 池化
    • 示例
  • 归一化操作
    • 示例
  • Dropout
    • 示例
  • torch.nn.functional 与 torch.nn 的区别

介绍

torch.nn.functional 是 PyTorch 中的一个模块,提供了许多函数式的神经网络操作,包括激活函数、损失函数、卷积操作等。这些函数是无状态的(stateless),与 torch.nn 中的模块化层(如 nn.ReLU、nn.Conv2d 等)不同,torch.nn.functional 提供的是直接的函数调用方式。

激活函数

torch.nn.functional 提供了许多常用的激活函数,例如 ReLU、Sigmoid、Tanh 等。

import torch.nn.functional as F

在这里插入图片描述

示例

import torch  
import torch.nn.functional as F  x = torch.tensor([-1.0, 0.0, 1.0])  
relu_output = F.relu(x)  # ReLU 激活  
softmax_output = F.softmax(x, dim=0)  # Softmax 激活  
print(relu_output)  # tensor([0., 0., 1.])  
print(softmax_output)  # tensor([0.0900, 0.2447, 0.6652])

损失函数

torch.nn.functional 提供了许多损失函数,与 torch.nn 中的模块化损失函数(如 nn.CrossEntropyLoss)功能相同,但需要显式传入参数。
在这里插入图片描述

示例

input = torch.tensor([[0.5, 1.5], [2.0, 1.0]], requires_grad=True)  
target = torch.tensor([1, 0])  
loss = F.cross_entropy(input, target)  # 交叉熵损失  
print(loss)  # tensor(1.2412, grad_fn=<NllLossBackward>)

卷积操作

torch.nn.functional 提供了卷积操作的函数式实现,例如 F.conv1d、F.conv2d、F.conv3d。
在这里插入图片描述

示例

input = torch.randn(1, 1, 5)  # 输入:batch_size=1, channels=1, width=5  
weight = torch.randn(1, 1, 3)  # 卷积核:out_channels=1, in_channels=1, kernel_size=3  
output = F.conv1d(input, weight)  
print(output.shape)  # torch.Size([1, 1, 3])

池化

torch.nn.functional 提供了池化操作的函数式实现,例如最大池化和平均池化。
在这里插入图片描述

示例

input = torch.tensor([[[[1.0, 2.0], [3.0, 4.0]]]])  # 输入:batch_size=1, channels=1, height=2, width=2  
output = F.max_pool2d(input, kernel_size=2)  
print(output)  # tensor([[[[4.]]]])

归一化操作

torch.nn.functional 提供了归一化操作的函数式实现,例如 BatchNorm、LayerNorm 等。
在这里插入图片描述

示例

input = torch.randn(2, 3)  # 输入:batch_size=2, features=3  
output = F.layer_norm(input, normalized_shape=(3,))  
print(output)

Dropout

torch.nn.functional 提供了 Dropout 的函数式实现。
在这里插入图片描述

示例

input = torch.tensor([1.0, 2.0, 3.0])  
output = F.dropout(input, p=0.5, training=True)  # 50% 概率随机置零  
print(output)

torch.nn.functional 与 torch.nn 的区别

在这里插入图片描述

相关文章:

torch.nn.functional的用法

文章目录 介绍激活函数示例 损失函数示例 卷积操作示例 池化示例 归一化操作示例 Dropout示例 torch.nn.functional 与 torch.nn 的区别 介绍 torch.nn.functional 是 PyTorch 中的一个模块&#xff0c;提供了许多函数式的神经网络操作&#xff0c;包括激活函数、损失函数、卷…...

最新常见的图数据库对比,选型,架构,性能对比

图数据库排名 地址&#xff1a;https://db-engines.com/en/ranking/graphdbms 知识图谱查询语言 SPARQL、Cypher、Gremlin、PGQL 和 G-CORE 语法 / 语义 / 特性 SPARQL Cypher Gremlin PGQL G-CORE 图模式匹配查询 语法 CGP CGP CGP(无可选)1 CGP CGP 语义 子…...

UE5材质节点Camera Vector/Reflection Vector

Camera Vector相机向量&#xff0c;输出像素到相机的方向&#xff0c;结果归一化 会随着相机移动而改变 Reflection Vector 反射向量&#xff0c;物体表面法线反射到相机的方向&#xff0c;x和y和camera vector相反 配合hdr使用...

NextCloud服务安装与配置教程

NextCloud服务安装与配置教程 什么是 NextCloud: Nextcloud 是一款开源的私有云存储和协作平台,允许用户在自己的服务器上托管数据并管理团队协作。它可以作为一个功能丰富、安全可靠的替代方案,与商业云服务(如 Google Drive、Dropbox)相比提供更多控制和隐私保护。简单来…...

详解GPT-信息抽取任务 (GPT-3 FAMILY LARGE LANGUAGE MODELS)

GPT-3 FAMILY LARGE LANGUAGE MODELS Information Extraction 自然语言处理信息提取任务&#xff08;NLP-IE&#xff09;&#xff1a;从非结构化文本数据中提取结构化数据&#xff0c;例如提取实体、关系和事件 [164]。将非结构化文本数据转换为结构化数据可以实现高效的数据处…...

华为数通考试模拟真题(附带答案解析)题库领取

【多选题】 管理员想要更新华为路由器的VRP版本&#xff0c;则正确的方法有? A管理员把路由器配置为FTP服务器&#xff0c;通过FTP来传输VRP软件 B:管理员把路由器置为FTP客户端&#xff0c;通过FTP来传输VRP软件 C:管理员把路由器配置为TFTP客户端&#xff0c;通过TFTP来传…...

微信小程序:正确输出<小于,大于>符号

错误写法 1、如果直接输入<符号会直接报错&#xff0c;>能正常使用&#xff0c;如图标红的是错误写法 2、输入html的<&gt的写法&#xff0c;会原样输入符号 解决方法 采用变量的方式输出 1、js写入变量 2、wxml直接写...

Flink源码解析之:如何根据算法生成StreamGraph过程

Flink源码解析之&#xff1a;如何根据算法生成StreamGraph过程 在我们日常编写Flink应用的时候&#xff0c;会首先创建一个StreamExecutionEnvironment.getExecutionEnvironment()对象&#xff0c;在添加一些自定义处理算子后&#xff0c;会调用env.execute来执行定义好的Flin…...

矩阵简单问题(Java)

问题&#xff1a; 顺时针打印二维方阵&#xff1a; 1 2 3 4 15 5 6 7 8 14 9 10 11 12 13 13 14 15 16 public class Test1 {public static void main(String[] args) {int[][] arr new int[][]{{1, 2, 3, 4,100},{5, 6, 7, 8,101},{9, 10, 11, 12,102},{13, 14, 15, 16,…...

Elasticsearch DSL版

文章目录 1.索引库操作创建索引库&#xff1a;删除索引库&#xff1a;查询索引库&#xff1a;修改索引库&#xff1a;总结 2.文档操作创建文档&#xff1a;查询文档&#xff1a;删除文档&#xff1a;全量修改文档&#xff1a;增量修改文档&#xff1a;总结 3.DSL查询语法&#…...

2024-12-29-sklearn学习(26)模型选择与评估-交叉验证:评估估算器的表现 今夜偏知春气暖,虫声新透绿窗纱。

文章目录 sklearn学习(26) 模型选择与评估-交叉验证&#xff1a;评估估算器的表现26.1 计算交叉验证的指标26.1.1 cross_validate 函数和多度量评估26.1.2 通过交叉验证获取预测 26.2 交叉验证迭代器26.2.1 交叉验证迭代器–循环遍历数据26.2.1.1 K 折26.2.1.2 重复 K-折交叉验…...

STM32CUBEIDE FreeRTOS操作教程(十二):std dynamic memory 标准动态内存

STM32CUBEIDE FreeRTOS操作教程&#xff08;十二&#xff09;&#xff1a;std dynamic memory 标准动态内存 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件&#xff0c;不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F40…...

异步爬虫之aiohttp的使用

在上一篇博客我们介绍了异步爬虫的基本原理和 asyncio 的基本用法&#xff0c;并且在最后简单提及了使用aiohttp 实现网页爬取的过程。本篇博客我们介绍一下 aiohttp 的常见用法。 基本介绍 前面介绍的 asyncio模块&#xff0c;其内部实现了对 TCP、UDP、SSL协议的异步操作&a…...

【Rust自学】9.1. 不可恢复的错误以及panic!

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 9.1.1. Rust错误处理概述 Rust拥有极高的可靠性&#xff0c;这也延伸到了错误处理的领域。比如说在大部分情况下&#xff0c;Rust会迫使你…...

【老张的程序人生】一天时间,我成软考高级系统分析师

今年下半年&#xff0c;我心血来潮报考了软考高级系统分析师。彼时的我&#xff0c;工作繁忙至极&#xff0c;一周十四节课&#xff0c;班主任的职责压身&#xff0c;还兼任教学管理事务&#xff0c;每日忙得晕头转向&#xff0c;那点可怜的闲暇时光&#xff0c;也都奉献给了游…...

vue使用el-select下拉框自定义复选框

在 Vue 开发中&#xff0c;高效且美观的组件能极大地提升用户体验和开发效率。在vue中使用elementplus 的 el-select下拉框实现了一个自定义的多选下拉框组件。 一、代码功能概述 这段代码创建了一个可多选的下拉框组件&#xff0c;通过el-select和el-checkbox-group结合的方…...

k8s基础(2)—Kubernetes-Namespace

一、Namespace概述 名字空间 在 Kubernetes 中&#xff0c;名字空间&#xff08;Namespace&#xff09; 提供一种机制&#xff0c;将同一集群中的资源划分为相互隔离的组。 同一名字空间内的资源名称要唯一&#xff0c;但跨名字空间时没有这个要求。 名字空间作用域仅针对带有…...

APM for Large Language Models

APM for Large Language Models 随着大语言模型&#xff08;LLMs&#xff09;在生产环境中的广泛应用&#xff0c;确保其可靠性和可观察性变得至关重要。应用性能监控&#xff08;APM&#xff09;在这一过程中发挥了关键作用&#xff0c;帮助开发者和运维人员深入了解LLM系统的…...

Spark Runtime Filter

Runtime Filter 参考链接&#xff1a; https://docs.google.com/document/d/16IEuyLeQlubQkH8YuVuXWKo2-grVIoDJqQpHZrE7q04/edit?tabt.0https://www.modb.pro/db/557718https://issues.apache.org/jira/browse/SPARK-32268https://github.com/apache/spark/pull/35789https…...

AI大模型系列之七:Transformer架构讲解

目录 Transformer网络是什么&#xff1f; 输入模块结构&#xff1a; 编码器模块结构&#xff1a; 解码器模块: 输出模块结构&#xff1a; Transformer 具体是如何工作的&#xff1f; Transformer核心思想是什么&#xff1f; Transformer的代码架构 自注意力机制是什么…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...