torch.nn.functional的用法
文章目录
- 介绍
- 激活函数
- 示例
- 损失函数
- 示例
- 卷积操作
- 示例
- 池化
- 示例
- 归一化操作
- 示例
- Dropout
- 示例
- torch.nn.functional 与 torch.nn 的区别
介绍
torch.nn.functional 是 PyTorch 中的一个模块,提供了许多函数式的神经网络操作,包括激活函数、损失函数、卷积操作等。这些函数是无状态的(stateless),与 torch.nn 中的模块化层(如 nn.ReLU、nn.Conv2d 等)不同,torch.nn.functional 提供的是直接的函数调用方式。
激活函数
torch.nn.functional 提供了许多常用的激活函数,例如 ReLU、Sigmoid、Tanh 等。
import torch.nn.functional as F

示例
import torch
import torch.nn.functional as F x = torch.tensor([-1.0, 0.0, 1.0])
relu_output = F.relu(x) # ReLU 激活
softmax_output = F.softmax(x, dim=0) # Softmax 激活
print(relu_output) # tensor([0., 0., 1.])
print(softmax_output) # tensor([0.0900, 0.2447, 0.6652])
损失函数
torch.nn.functional 提供了许多损失函数,与 torch.nn 中的模块化损失函数(如 nn.CrossEntropyLoss)功能相同,但需要显式传入参数。

示例
input = torch.tensor([[0.5, 1.5], [2.0, 1.0]], requires_grad=True)
target = torch.tensor([1, 0])
loss = F.cross_entropy(input, target) # 交叉熵损失
print(loss) # tensor(1.2412, grad_fn=<NllLossBackward>)
卷积操作
torch.nn.functional 提供了卷积操作的函数式实现,例如 F.conv1d、F.conv2d、F.conv3d。

示例
input = torch.randn(1, 1, 5) # 输入:batch_size=1, channels=1, width=5
weight = torch.randn(1, 1, 3) # 卷积核:out_channels=1, in_channels=1, kernel_size=3
output = F.conv1d(input, weight)
print(output.shape) # torch.Size([1, 1, 3])
池化
torch.nn.functional 提供了池化操作的函数式实现,例如最大池化和平均池化。

示例
input = torch.tensor([[[[1.0, 2.0], [3.0, 4.0]]]]) # 输入:batch_size=1, channels=1, height=2, width=2
output = F.max_pool2d(input, kernel_size=2)
print(output) # tensor([[[[4.]]]])
归一化操作
torch.nn.functional 提供了归一化操作的函数式实现,例如 BatchNorm、LayerNorm 等。

示例
input = torch.randn(2, 3) # 输入:batch_size=2, features=3
output = F.layer_norm(input, normalized_shape=(3,))
print(output)
Dropout
torch.nn.functional 提供了 Dropout 的函数式实现。

示例
input = torch.tensor([1.0, 2.0, 3.0])
output = F.dropout(input, p=0.5, training=True) # 50% 概率随机置零
print(output)
torch.nn.functional 与 torch.nn 的区别

相关文章:
torch.nn.functional的用法
文章目录 介绍激活函数示例 损失函数示例 卷积操作示例 池化示例 归一化操作示例 Dropout示例 torch.nn.functional 与 torch.nn 的区别 介绍 torch.nn.functional 是 PyTorch 中的一个模块,提供了许多函数式的神经网络操作,包括激活函数、损失函数、卷…...
最新常见的图数据库对比,选型,架构,性能对比
图数据库排名 地址:https://db-engines.com/en/ranking/graphdbms 知识图谱查询语言 SPARQL、Cypher、Gremlin、PGQL 和 G-CORE 语法 / 语义 / 特性 SPARQL Cypher Gremlin PGQL G-CORE 图模式匹配查询 语法 CGP CGP CGP(无可选)1 CGP CGP 语义 子…...
UE5材质节点Camera Vector/Reflection Vector
Camera Vector相机向量,输出像素到相机的方向,结果归一化 会随着相机移动而改变 Reflection Vector 反射向量,物体表面法线反射到相机的方向,x和y和camera vector相反 配合hdr使用...
NextCloud服务安装与配置教程
NextCloud服务安装与配置教程 什么是 NextCloud: Nextcloud 是一款开源的私有云存储和协作平台,允许用户在自己的服务器上托管数据并管理团队协作。它可以作为一个功能丰富、安全可靠的替代方案,与商业云服务(如 Google Drive、Dropbox)相比提供更多控制和隐私保护。简单来…...
详解GPT-信息抽取任务 (GPT-3 FAMILY LARGE LANGUAGE MODELS)
GPT-3 FAMILY LARGE LANGUAGE MODELS Information Extraction 自然语言处理信息提取任务(NLP-IE):从非结构化文本数据中提取结构化数据,例如提取实体、关系和事件 [164]。将非结构化文本数据转换为结构化数据可以实现高效的数据处…...
华为数通考试模拟真题(附带答案解析)题库领取
【多选题】 管理员想要更新华为路由器的VRP版本,则正确的方法有? A管理员把路由器配置为FTP服务器,通过FTP来传输VRP软件 B:管理员把路由器置为FTP客户端,通过FTP来传输VRP软件 C:管理员把路由器配置为TFTP客户端,通过TFTP来传…...
微信小程序:正确输出<小于,大于>符号
错误写法 1、如果直接输入<符号会直接报错,>能正常使用,如图标红的是错误写法 2、输入html的<>的写法,会原样输入符号 解决方法 采用变量的方式输出 1、js写入变量 2、wxml直接写...
Flink源码解析之:如何根据算法生成StreamGraph过程
Flink源码解析之:如何根据算法生成StreamGraph过程 在我们日常编写Flink应用的时候,会首先创建一个StreamExecutionEnvironment.getExecutionEnvironment()对象,在添加一些自定义处理算子后,会调用env.execute来执行定义好的Flin…...
矩阵简单问题(Java)
问题: 顺时针打印二维方阵: 1 2 3 4 15 5 6 7 8 14 9 10 11 12 13 13 14 15 16 public class Test1 {public static void main(String[] args) {int[][] arr new int[][]{{1, 2, 3, 4,100},{5, 6, 7, 8,101},{9, 10, 11, 12,102},{13, 14, 15, 16,…...
Elasticsearch DSL版
文章目录 1.索引库操作创建索引库:删除索引库:查询索引库:修改索引库:总结 2.文档操作创建文档:查询文档:删除文档:全量修改文档:增量修改文档:总结 3.DSL查询语法&#…...
2024-12-29-sklearn学习(26)模型选择与评估-交叉验证:评估估算器的表现 今夜偏知春气暖,虫声新透绿窗纱。
文章目录 sklearn学习(26) 模型选择与评估-交叉验证:评估估算器的表现26.1 计算交叉验证的指标26.1.1 cross_validate 函数和多度量评估26.1.2 通过交叉验证获取预测 26.2 交叉验证迭代器26.2.1 交叉验证迭代器–循环遍历数据26.2.1.1 K 折26.2.1.2 重复 K-折交叉验…...
STM32CUBEIDE FreeRTOS操作教程(十二):std dynamic memory 标准动态内存
STM32CUBEIDE FreeRTOS操作教程(十二):std dynamic memory 标准动态内存 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F40…...
异步爬虫之aiohttp的使用
在上一篇博客我们介绍了异步爬虫的基本原理和 asyncio 的基本用法,并且在最后简单提及了使用aiohttp 实现网页爬取的过程。本篇博客我们介绍一下 aiohttp 的常见用法。 基本介绍 前面介绍的 asyncio模块,其内部实现了对 TCP、UDP、SSL协议的异步操作&a…...
【Rust自学】9.1. 不可恢复的错误以及panic!
喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 9.1.1. Rust错误处理概述 Rust拥有极高的可靠性,这也延伸到了错误处理的领域。比如说在大部分情况下,Rust会迫使你…...
【老张的程序人生】一天时间,我成软考高级系统分析师
今年下半年,我心血来潮报考了软考高级系统分析师。彼时的我,工作繁忙至极,一周十四节课,班主任的职责压身,还兼任教学管理事务,每日忙得晕头转向,那点可怜的闲暇时光,也都奉献给了游…...
vue使用el-select下拉框自定义复选框
在 Vue 开发中,高效且美观的组件能极大地提升用户体验和开发效率。在vue中使用elementplus 的 el-select下拉框实现了一个自定义的多选下拉框组件。 一、代码功能概述 这段代码创建了一个可多选的下拉框组件,通过el-select和el-checkbox-group结合的方…...
k8s基础(2)—Kubernetes-Namespace
一、Namespace概述 名字空间 在 Kubernetes 中,名字空间(Namespace) 提供一种机制,将同一集群中的资源划分为相互隔离的组。 同一名字空间内的资源名称要唯一,但跨名字空间时没有这个要求。 名字空间作用域仅针对带有…...
APM for Large Language Models
APM for Large Language Models 随着大语言模型(LLMs)在生产环境中的广泛应用,确保其可靠性和可观察性变得至关重要。应用性能监控(APM)在这一过程中发挥了关键作用,帮助开发者和运维人员深入了解LLM系统的…...
Spark Runtime Filter
Runtime Filter 参考链接: https://docs.google.com/document/d/16IEuyLeQlubQkH8YuVuXWKo2-grVIoDJqQpHZrE7q04/edit?tabt.0https://www.modb.pro/db/557718https://issues.apache.org/jira/browse/SPARK-32268https://github.com/apache/spark/pull/35789https…...
AI大模型系列之七:Transformer架构讲解
目录 Transformer网络是什么? 输入模块结构: 编码器模块结构: 解码器模块: 输出模块结构: Transformer 具体是如何工作的? Transformer核心思想是什么? Transformer的代码架构 自注意力机制是什么…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
什么是VR全景技术
VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...
DiscuzX3.5发帖json api
参考文章:PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下,适配我自己的需求 有一个站点存在多个采集站,我想通过主站拿标题,采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...
【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅!
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅! 🌱 前言:一棵树的浪漫,从数组开始说起 程序员的世界里,数组是最常见的基本结构之一,几乎每种语言、每种算法都少不了它。可你有没有想过,一组看似“线性排列”的有序数组,竟然可以**“长”成一棵平衡的二…...
