当前位置: 首页 > news >正文

大模型系列17-RAGFlow搭建本地知识库

大模型系列17-RAGFlow搭建本地知识库

  • 安装ollama
  • 安装open-wehui
  • 安装并运行ragflow
  • RAG(检索、增强、生成)
    • RAG是什么
    • RAG三过程
    • RAG问答系统构建步骤
      • 向量库构建
      • 检索模块
      • 生成模块
    • RAG解决LLM的痛点
  • 使用ragflow
    • 访问ragflow
    • 配置ollama模型
      • 添加Embedding模型
      • 添加chat模型
      • 系统模式设置
    • 创建知识库
      • 数据集配置
      • 上传论文
      • 论文解析
      • 创建论文助理

安装ollama

参考写的ollama的文档

安装open-wehui

参考写的安装open-webui的文章

安装并运行ragflow

下载ragflow
git clone https://github.com/infiniflow/ragflow.git
下载依赖镜像并运行

 docker compose -f docker-compose.yml up -ddocker logs -f ragflow-server

运行成功后,使用 docker logs -f ragflow-server 查看运行状态
在这里插入图片描述

ragflow使用的各种环境变量在ragflow/docker/.env文件中,可以修改 端口号、ragflow的镜像版本等

RAG(检索、增强、生成)

RAG是什么

在这里插入图片描述
RAG(Retrieval Augmented Generation 检索增强生成)模型由Facebook AI Research(FAIR)团队于2020年首次提出,并迅速成为大模型应用中的热门方案。它结合了信息检索技术(例如传统向量数据库)和大语言模型(如LLMs)的技术,从外部知识库中检索相关信息,并将其作为prompt输入到大模型中获取输出。

在这里插入图片描述

RAG三过程

RAG 包含三个主要过程:检索、增强和生成

  • 检索:根据用户的查询内容,从外部知识库获取相关信息。具体而言,将用户的查询通过嵌入模型转换为向量,以便与向量数据库中存储的相关知识进行比对。通过相似性搜索,找出与查询最匹配的前 K 个数据。这个目的是为了给后续生成提供上下文信息知识。
  • 增强:将用户的查询内容和检索到的相关知识一起嵌入到一个预设的提示词模板中。对LLMs的提示词(prompt)
  • 生成:将经过检索增强的提示词内容输入到大型语言模型中,以生成所需的输出。

RAG问答系统构建步骤

在这里插入图片描述

在这里插入图片描述

向量库构建

收集数据:首先,需要收集与问答系统相关的各种数据,这些数据可以来自文档、网页、数据库等多种来源。
数据清洗:对收集到的数据进行清洗,去除噪声、重复项和无关信息,确保数据的质量和准确性。
知识库构建:将清洗后的数据构建成知识库。这通常包括将文本分割成较小的片段(chunks),使用文本嵌入模型(如GLM)将这些片段转换成向量,并将这些向量存储在向量数据库(如FAISS、Milvus等)中。

检索模块

问题向量化:当用户输入查询问题时,使用相同的文本嵌入模型将问题转换成向量。
相似度检索:在向量数据库中检索与问题向量最相似的知识库片段(chunks)。这通常通过计算向量之间的相似度(如余弦相似度)来实现。
结果排序:根据相似度得分对检索到的结果进行排序,选择最相关的片段作为后续生成的输入。

生成模块

上下文融合:将检索到的相关片段与原始问题合并,形成更丰富的上下文信息,将其作为大模型的prompt输入。
大语言模型生成:使用大语言模型(如GLM)基于上述上下文信息生成回答。大语言模型会学习如何根据检索到的信息来生成准确、有用的回答。

RAG解决LLM的痛点

RAG(检索增强生成)旨在缓解甚至解决以下大模型落地应用的痛点:

  • 有幻觉,可以提供更准确和可靠的领域特定知识,减少生成幻觉
  • 时效性,不需要重新训练模型,更新知识库即可保持同步更新
  • 使用外部知识库,保护隐私
  • 支持更长的上下文

参考:

  • 一文彻底搞懂大模型 - RAG(检索、增强、生成)
  • RAG系统综述
  • 一文速通RAG
  • 精通 RAG:打造顶尖企业级 RAG 系统的秘籍
  • Retrieval Augmented Generation(RAGs)解释[译]
  • langchain

使用ragflow

访问ragflow

网址:http://localhost/login,然后随便注册账户:
在这里插入图片描述

配置ollama模型

ollama list列出所有的模型,有两个Embedding模型以及一个qwen2:7b的模型
在这里插入图片描述

添加Embedding模型

在这里插入图片描述

添加chat模型

在这里插入图片描述
添加过后
在这里插入图片描述

系统模式设置

将刚才添加的模型设置到系统默认配置中
在这里插入图片描述

创建知识库

数据集配置

设置嵌入Embedding模型以及解析方法
在这里插入图片描述
这里我们做的机器学习论文库,因此可以将“解析方法”从“General”调整为“Paper”模式,对论文进行解析。

上传论文

在这里插入图片描述

论文解析

论文上传完毕后,执行论文内容的解析
在这里插入图片描述
论文解析过程,花了10几分钟
在这里插入图片描述

创建论文助理

新建一个论文助理,用于后续的聊天对话
在这里插入图片描述
聊天询问DeepSeek,可以看到确实识别了知识库
在这里插入图片描述

相关文章:

大模型系列17-RAGFlow搭建本地知识库

大模型系列17-RAGFlow搭建本地知识库 安装ollama安装open-wehui安装并运行ragflowRAG(检索、增强、生成)RAG是什么RAG三过程RAG问答系统构建步骤向量库构建检索模块生成模块 RAG解决LLM的痛点 使用ragflow访问ragflow配置ollama模型添加Embedding模型添加…...

常用的mac软件下载地址

目录 iRightMouse Pro(超级右键) xmind(思维导图) Parallels Desktop(虚拟机工具) Paste(跨平台复制粘贴) AutoSwitchInput Pro(自动切换输入法) Snipa…...

基于51单片机和16X16LED点阵屏(74HC138和74HC595驱动)的小游戏《贪吃蛇》

目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码1、定时器02、自制八位独立按键3、点阵屏模块 四、主函数总结 系列文章目录 前言 《贪吃蛇》,一款经典的、怀旧的小游戏,单片机入门必写程序。 以《贪吃蛇》为载体,熟悉各种屏…...

python中常用的内置函数介绍

python中常用的内置函数介绍 1. print()2. len()3. type()4. str(), int(), float()5. list(), tuple(), set(), dict()6. range()7. sum()8. max(), min()9. sorted()10. zip()11. enumerate()12. map()13. filter()14. any(), all()15. abs()16. pow()17. round()18. ord(), …...

【微服务】Spring Cloud Config解决的问题和案例

文章目录 强烈推荐引言解决问题1. 配置管理的集中化2. 配置的版本控制3. 环境特定配置4. 配置的动态刷新5. 安全管理敏感数据6. 配置的一致性 组件1. **配置服务器(Config Server)**2. **配置客户端(Config Client)** 配置示例配置…...

华为OD机试E卷 --最小的调整次数--24年OD统一考试(Java JS Python C C++)

文章目录 题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码c++算法源码题目描述 有一个特异性的双端队列一,该队列可以从头部或尾部添加数据,但是只能从头部移出数据。 小A依次执行2n个指令往队列中添加数据和移出数据。其中n个指令是添…...

Oracle Dataguard(主库为 Oracle 11g 单节点)配置详解(2):配置主数据库

Oracle Dataguard(主库为 Oracle 11g 单节点)配置详解(2):配置主数据库 目录 Oracle Dataguard(主库为 Oracle 11g 单节点)配置详解(2):配置主数据库一、配置…...

慧集通iPaaS集成平台低代码训练-实践篇

练习使用帐号信息: 1.致远A8平台(请自行准备测试环境) 慧集通连接器配置相关信息 访问地址: rest账号:rest rest密码: OA账号: 2.云星空(请自行准备测试环境) 连接…...

TDengine 如何进行高效数据建模

1.背景 数据建模对于数据库建立后整体高效运行非常关键,不同建模方式,可能会产生相差几倍的性能差别 2. 建库 建模在建库阶段应考虑几下几点: 建多少库 根据业务情况确定建库个数,TDengine 不支持跨库查询,如果业…...

HarmonyOS NEXT应用开发实战:一分钟写一个网络接口,JsonFormat插件推荐

在开发鸿蒙操作系统应用时,网络接口的实现往往是一个繁琐且重复的过程。为了提高开发效率,坚果派(nutpi.net)特别推出了一个非常实用的插件——JsonFormat。这款插件的主要功能是将JSON格式的数据直接转换为arkts的结构定义,让我们在编写接口…...

基于动力学的MPC控制器设计盲点解析

文章目录 Apollo MPC控制器的设计架构误差模型和离散化预测模型推导目标函数和约束设计优化求解优化OSQP求解器参考文献 Apollo MPC控制器的设计架构 误差模型和离散化 状态变量和控制变量 1、Apollo MPC控制器中状态变量主要有如下6个 matrix_state_ Matrix::Zero(basic_stat…...

Java重要面试名词整理(十六):SpringBoot

由于SpringBoot和Spring、SpringMVC重合度较高,更多详细内容请参考https://blog.csdn.net/weixin_73195042/article/details/144632385 本文着重于SpringBoot的启动流程 文章目录 概念启动流程底层分析构造SpringApplication对象run(String... args)方法SpringBoo…...

在K8S中,如何部署kubesphere?

在Kubernetes集群中,对于一些基础能力较弱的群体来说K8S控制面板操作存在一定的难度,此时kubesphere可以有效的解决这类难题。以下是部署kubesphere的操作步骤: 操作部署: 1. 部署nfs共享存储目录 yum -y install nfs-server e…...

算法-查找缺失的数字

给定一个包含 [0, n] 中 n 个数的数组 nums ,找出 [0, n] 这个范围内没有出现在数组中的那个数。 示例 1: 输入:nums [3,0,1] 输出:2 解释:n 3,因为有 3 个数字,所以所有的数字都在范围 [0,3…...

antd-vue - - - - - a-date-picker限制选择范围

antd-vue - - - - - a-date-picker限制选择范围 1. 效果展示2. 代码展示 1. 效果展示 如图&#xff1a;限制选择范围为 今年 & 去年 的 月份. 2. 代码展示 <template><a-date-picker:disabledDate"disabledDate"picker"month"/> &l…...

计算机网络练习题

学习这么多啦&#xff0c;那就简单写几个选择题巩固一下吧&#xff01; 1. 在IPv4分组各字段中&#xff0c;以下最适合携带隐藏信息的是&#xff08;D&#xff09; A、源IP地址 B、版本 C、TTL D、标识 2. OSI 参考模型中&#xff0c;数据链路层的主要功能是&#xff08;…...

redis的集群模式与ELK基础

一、redis的集群模式 1.主从复制 &#xff08;1&#xff09;概述 主从模式&#xff1a;这是redis高可用的基础&#xff0c;哨兵和集群都是建立在此基础之上。 主从模式和数据库的主从模式是一样的&#xff0c;主负责写入&#xff0c;然后把写入的数据同步到从服务器&#xff…...

STM32-笔记18-呼吸灯

1、实验目的 使用定时器 4 通道 3 生成 PWM 波控制 LED1 &#xff0c;实现呼吸灯效果。 频率&#xff1a;2kHz&#xff0c;PSC71&#xff0c;ARR499 利用定时器溢出公式 周期等于频率的倒数。故Tout 1/2KHZ&#xff1b;Ft 72MHZ PSC71&#xff08;喜欢设置成Ft的倍数&…...

Vue3 + ElementPlus动态合并数据相同的单元格(超级详细版)

最近的新项目有个需求需要合并单元列表。ElementPlus 的 Table 提供了合并行或列的方法&#xff0c;可以参考一下https://element-plus.org/zh-CN/component/table.html 但项目中&#xff0c;后台数据返回格式和指定合并是动态且没有规律的&#xff0c;Element 的示例过于简单&…...

【JavaWeb后端学习笔记】MySQL的数据控制语言(Data Control Language,DCL)

MySQL DCL 1、管理用户2、控制权限 DCL英文全称是Data Control Language&#xff08;数据控制语言&#xff09;&#xff0c;用来管理数据库用户、控制数据库访问权限。 1、管理用户 管理用户的操作都需要在MySQL自带的 mysql 数据库中进行。 -- 查询用户 -- 需要先切换到MyS…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...