2025-1-2-sklearn学习(30)模型选择与评估-验证曲线: 绘制分数以评估模型 真珠帘卷玉楼空,天淡银河垂地。
文章目录
- sklearn学习(30) 模型选择与评估-验证曲线: 绘制分数以评估模型
- 30.1. 验证曲线
- 30.2. 学习曲线
sklearn学习(30) 模型选择与评估-验证曲线: 绘制分数以评估模型
文章参考网站:
https://sklearn.apachecn.org/
和
https://scikit-learn.org/stable/
每种估计器都有其优势和缺陷。它的泛化误差可以用偏差、方差和噪声来分解。估计值的 偏差 是不同训练集的平均误差。估计值的 方差 用来表示它对训练集的变化有多敏感。噪声是数据的一个属性。
在下面的图中,我们可以看到一个函数 f ( x ) = cos ( 3 2 π x ) f(x) = \cos (\frac{3}{2} \pi x) f(x)=cos(23πx) 和这个函数的一些噪声样本。 我们用三个不同的估计来拟合函数: 多项式特征为1,4和15的线性回归。我们看到,第一个估计最多只能为样本和真正的函数提供一个很差的拟合 ,因为它太简单了(高偏差),第二个估计几乎完全近似,最后一个估计完全接近训练数据, 但不能很好地拟合真实的函数,即对训练数据的变化(高方差)非常敏感。

偏差和方差是估计所固有的属性,我们通常必须选择合适的学习算法和超参数,以使得偏差和 方差都尽可能的低(参见偏差-方差困境)。 另一种降低方差的方法是使用更多的训练数据。不论如何,如果真实函数过于复杂并且不能用一个方 差较小的估计值来近似,则只能去收集更多的训练数据。
在一个简单的一维问题中,我们可以很容易看出估计值是否存在偏差或方差。然而,在高维空间中, 模型可能变得非常难以具象化。 出于这种原因,使用以下工具通常是有帮助的。
示例:
- Underfitting vs. Overfitting
- Plotting Validation Curves
- Plotting Learning Curves
30.1. 验证曲线
我们需要一个评分函数(参见模型评估:模型评估: 量化预测的质量)来验证一个模型, 例如分类器的准确性。 选择估计器的多个超参数的正确方法当然是网格搜索或类似方法 (参见调优估计的超参数 调整估计器的超参数 ),其选择一个或多个验证集上的分数最高的超参数。 请注意,如果我们基于验证分数优化了超参数,则验证分数就有偏差了,并且不再是一个良好的泛化估计。 为了得到正确的泛化估计,我们必须在另一个测试集上计算得分。
然而,绘制单个超参数对训练分数和验证分数的影响,有时有助于发现该估计是否因为某些超参数的值 而出现过拟合或欠拟合。
本例中,下面的方程 validation_curve 能起到如下作用:
>>> import numpy as np
>>> from sklearn.model_selection import validation_curve
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import Ridge>>> np.random.seed(0)
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> indices = np.arange(y.shape[0])
>>> np.random.shuffle(indices)
>>> X, y = X[indices], y[indices]>>> train_scores, valid_scores = validation_curve(Ridge(), X, y, "alpha",
... np.logspace(-7, 3, 3),
... cv=5)
>>> train_scores
array([[0.93..., 0.94..., 0.92..., 0.91..., 0.92...],[0.93..., 0.94..., 0.92..., 0.91..., 0.92...],[0.51..., 0.52..., 0.49..., 0.47..., 0.49...]])
>>> valid_scores
array([[0.90..., 0.84..., 0.94..., 0.96..., 0.93...],[0.90..., 0.84..., 0.94..., 0.96..., 0.93...],[0.46..., 0.25..., 0.50..., 0.49..., 0.52...]])
如果训练得分和验证得分都很低,则估计器是不合适的。如果训练得分高,验证得分低,则估计器过拟合, 否则估计会拟合得很好。通常不可能有较低的训练得分和较高的验证得分。所有三种情况都可以 在下面的图中找到,其中我们改变了数字数据集上 SVM 的参数 γ \gamma γ 。

30.2. 学习曲线
学习曲线显示了对于不同数量的训练样本的估计器的验证和训练评分。它可以帮助我们发现从增加更多的训 练数据中能获益多少,以及估计是否受到更多来自方差误差或偏差误差的影响。如果在增加训练集大小时,验证分数和训练 分数都收敛到一个很低的值,那么我们将不会从更多的训练数据中获益。在下面的图中看到一个示例:朴素贝叶斯大致收敛到一个较低的分数。

我们可能需要使用评估器或者一个当前评估器的参数化形式来学习更复杂概念(例如有一个较低的偏差)。 如果训练样本的最大时,训练分数比验证分数得分大得多,那么增加训练样本很可能会增加泛化能力。 在下面的图中,可以看到支持向量机(SVM)可以从更多的训练样本中获益。

我们可以使用:learning_curve函数来绘制这样一个学习曲线所需的值(已使用的样本数量,训练集 上的平均分数和验证集上的平均分数):
>>> from sklearn.model_selection import learning_curve
>>> from sklearn.svm import SVC>>> train_sizes, train_scores, valid_scores = learning_curve(
... SVC(kernel='linear'), X, y, train_sizes=[50, 80, 110], cv=5)
>>> train_sizes
array([ 50, 80, 110])
>>> train_scores
array([[0.98..., 0.98 , 0.98..., 0.98..., 0.98...],[0.98..., 1. , 0.98..., 0.98..., 0.98...],[0.98..., 1. , 0.98..., 0.98..., 0.99...]])
>>> valid_scores
array([[1. , 0.93..., 1. , 1. , 0.96...],[1. , 0.96..., 1. , 1. , 0.96...],[1. , 0.96..., 1. , 1. , 0.96...]])
相关文章:
2025-1-2-sklearn学习(30)模型选择与评估-验证曲线: 绘制分数以评估模型 真珠帘卷玉楼空,天淡银河垂地。
文章目录 sklearn学习(30) 模型选择与评估-验证曲线: 绘制分数以评估模型30.1. 验证曲线30.2. 学习曲线 sklearn学习(30) 模型选择与评估-验证曲线: 绘制分数以评估模型 文章参考网站: https://sklearn.apachecn.org/ 和 https://scikit-learn.org/stable/ 每种估…...
【优选算法】查找总价格为目标值的两个商品
链接:LCR 179. 查找总价格为目标值的两个商品 - 力扣(LeetCode) 解法:利用单调性,使用双指针算法解决问题 1.先从小到大排序 2. sum > t : right--; sum < t : left; sum t : return class Solution {public…...
利用 NineData 实现 PostgreSQL 到 Kafka 的高效数据同步
记录一次 PostgreSQL 到 Kafka 的数据迁移实践。前段时间,NineData 的某个客户在一个项目中需要将 PostgreSQL 的数据实时同步到 Kafka。需求明确且普遍: PostgreSQL 中的交易数据,需要实时推送到 Kafka,供下游多个系统消费&#…...
future和CompletableFuture
future 什么是future Future 类是并发编程中一个非常重要的工具。它主要用于表示一个异步计算的结果,允许你在计算完成后获取结果或处理异常。Java 的 Future 也常常与线程池(如 ExecutorService)结合使用,用来执行并行任务&…...
如何通过深度学习提升大分辨率图像预测准确率?
随着科技的不断进步,图像处理在各个领域的应用日益广泛,特别是在医疗影像、卫星遥感、自动驾驶、安防监控等领域中,大分辨率图像的使用已经成为了一项不可或缺的技术。然而,大分辨率图像带来了巨大的计算和存储压力,同…...
【机器学习】机器学习的基本分类-半监督学习-Ladder Networks
Ladder Networks 是一种半监督学习模型,通过将无监督学习与监督学习相结合,在标记数据较少的情况下实现高效的学习。它最初由 A. Rasmus 等人在 2015 年提出,特别适合深度学习任务,如图像分类或自然语言处理。 核心思想 Ladder N…...
[react]小技巧, ts如何声明点击事件的类型
很简单, 鼠标放到事件上面就行了 如果想知道点击的是什么元素 ,打印他的nodename就行了 不过得断言为html元素才行 const handleClick (e: React.MouseEvent<HTMLDivElement, MouseEvent>) > {console.log(current, (e.target as HTMLElement).nodeName);}; 为什么…...
智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之9 重新开始 之2
本文要点 对程序设计而言:前者基于一个自上而下的 分类体系--(生物遗传基因),后者者需要一个收集差异的自下而上的差异继承路径--(系统继承源流) 就是 广义和狭义 分类学。 共性对齐 和 差异收集 正是两者…...
【从零开始】11. LLaMA-Factory 微调 Qwen 模型(番外篇)
书接上回,在完成了 RAGChecker 测试后,离 RAG 应用真正发布还差最后一步 - 基础信息指令微调。考虑到模型还是需要具备一定程度的“自我认知”,因此需要将公司信息“嵌入”到模型里面的。为此,我选择了 LLaMA-Factory(…...
WPF使用ContentControl控件实现区域导航,并使用Prism依赖注入优化
背景:使用ContentControl控件实现区域导航是有Mvvm框架的WPF都能使用的,不限于Prism 主要是将ContenControl控件的Content内容在ViewModel中切换成不同的用户控件 下面是MainViewModel: private object body;public object Body {get { retu…...
JavaWeb——MySQL-DML(1/3)-添加数据insert(DML 操作概述、INSERT 语句插入数据、语句演示、总结)
目录 DML 操作概述 INSERT 语句插入数据 INSERT 语句基础语法 INSERT 语句演示 注意事项 总结 DML 操作概述 DML 简介 DML(Data Manipulation Language)即数据操作语言,用于对数据库表中的数据进行增删改操作,包括添加数据&…...
经验证:将数据从索尼传输到Android的 4 种方法
概括 像Android Galaxy S20 这样的新型Android智能手机很酷,但除了将数据从索尼传输到Android之外。众所周知,旧的索尼手机上存储着大量的文件,因此将数据从旧的索尼手机传输到新的Android手机非常重要。为了解决这个问题,我们做…...
嵌入式应用实例→电子产品量产工具→UI界面的绘制和测试
前言 之前已经在博文https://blog.csdn.net/wenhao_ir/article/details/144747714中实现了用Freetype在LCD屏上绘制字符,本篇博文我们利用Freetype实现UI界面的绘制。 头文件include\ui.h的分析 头文件内的代码 #ifndef _UI_H #define _UI_H#include <common…...
如何删除 Docker 中的悬虚镜像?
在 Docker 中,悬虚镜像(Dangling Images)是指那些没有 标签 且没有被任何容器使用的镜像。这些镜像通常是由于构建过程中生成的中间层镜像或未正确清理的镜像残留。删除悬虚镜像可以释放磁盘空间并保持 Docker 环境的整洁。 1. 列出悬虚镜像…...
el-table树形懒加载展开改为点击行展开
思路:获取el-table中小箭头,然后调它的click事件! <el-tablerow-click"getOpenDetail":row-class-name"tableRowClassName">// 点击当前行展开节点getOpenDetail(row, column, event) {// 如果是叶子节点或点击的是…...
【Ubuntu】Ubuntu server 18.04 搭建Slurm并行计算环境(包含NFS)
Ubuntu server 18.04 搭建Slurm并行计算环境(包含NFS) 一、Munge 认证模块 1.1、安装 munge 主节点和子节点都安装munge #安装 sudo apt update && sudo apt install munge libmunge-dev#设置开机启动 sudo systemctl enable munge sudo syste…...
高并发场景下的秒杀系统架构设计与实现
引言 秒杀系统是一种高并发场景的典型应用,广泛存在于电商平台、抢票系统和促销活动中。秒杀活动的特点是短时间内吸引大量用户同时访问并尝试抢购商品,这对系统的高并发处理能力、稳定性和用户体验提出了极高的要求。 在秒杀系统中,常见的…...
搭建开源版Ceph分布式存储
系统:Rocky8.6 三台2H4G 三块10G的硬盘的虚拟机 node1 192.168.2.101 node2 192.168.2.102 node3 192.168.2.103 三台虚拟机环境准备 1、配置主机名和IP的映射关系 2、关闭selinux和firewalld防火墙 3、配置时间同步且所有节点chronyd服务开机自启 1、配置主机名和…...
QT----------多媒体
实现思路 多媒体模块功能概述: QT 的多媒体模块提供了丰富的功能,包括音频播放、录制、视频播放和摄像头操作等。 播放音频: 使用 QMediaPlayer 播放完整的音频文件。使用 QSoundEffect 播放简短的音效文件。 录制音频: 使用 QMe…...
选择器(结构伪类选择器,伪元素选择器),PxCook软件,盒子模型
结构为类选择器 伪元素选择器 PxCook 盒子模型 (内外边距,边框) 内外边距合并,塌陷问题 元素溢出 圆角 阴影: 模糊半径:越大越模糊,也就是越柔和 案例一:产品卡片 <!DOCTYPE html> <html lang&q…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
