当前位置: 首页 > news >正文

面试高频:一致性hash算法

这两天看到技术群里,有小伙伴在讨论一致性hash算法的问题,正愁没啥写的题目就来了,那就简单介绍下它的原理。下边我们以分布式缓存中经典场景举例,面试中也是经常提及的一些话题,看看什么是一致性hash算法以及它有那些过人之处。

构建场景

假如我们有三台缓存服务器编号node0node1node2,现在有3000万个key,希望可以将这些个key均匀的缓存到三台机器上,你会想到什么方案呢?

我们可能首先想到的方案,是取模算法hash(key)% N,对key进行hash运算后取模,N是机器的数量。key进行hash后的结果对3取模,得到的结果一定是0、1或者2,正好对应服务器node0node1node2,存取数据直接找对应的服务器即可,简单粗暴,完全可以解决上述的问题。

hash的问题

取模算法虽然使用简单,但对机器数量取模,在集群扩容和收缩时却有一定的局限性,因为在生产环境中根据业务量的大小,调整服务器数量是常有的事;而服务器数量N发生变化后hash(key)% N计算的结果也会随之变化。

比如:一个服务器节点挂了,计算公式从hash(key)% 3变成了hash(key)% 2,结果会发生变化,此时想要访问一个key,这个key的缓存位置大概率会发生改变,那么之前缓存key的数据也会失去作用与意义。

大量缓存在同一时间失效,造成缓存的雪崩,进而导致整个缓存系统的不可用,这基本上是不能接受的,为了解决优化上述情况,一致性hash算法应运而生~

那么,一致性哈希算法又是如何解决上述问题的?

一致性hash

一致性hash算法本质上也是一种取模算法,不过,不同于上边按服务器数量取模,一致性hash是对固定值2^32取模。

IPv4的地址是4组8位2进制数组成,所以用2^32可以保证每个IP地址会有唯一的映射

hash环

我们可以将这2^32个值抽象成一个圆环⭕️(不得意圆的,自己想个形状,好理解就行),圆环的正上方的点代表0,顺时针排列,以此类推,1、2、3、4、5、6……直到2^32-1,而这个由2的32次方个点组成的圆环统称为hash环

那么这个hash环和一致性hash算法又有什么关系嘞?我们还是以上边的场景为例,三台缓存服务器编号node0node1node2,3000万个key

服务器映射到hash环

这个时候计算公式就从hash(key)% N 变成了hash(服务器ip)% 2^32,使用服务器IP地址进行hash计算,用哈希后的结果对2^32取模,结果一定是一个0到2^32-1之间的整数,而这个整数映射在hash环上的位置代表了一个服务器,依次将node0node1node2三个缓存服务器映射到hash环上。

对象key映射到hash环

接着在将需要缓存的key对象也映射到hash环上,hash(key)% 2^32,服务器节点和要缓存的key对象都映射到了hash环,那对象key具体应该缓存到哪个服务器上呢?

对象key映射到服务器

从缓存对象key的位置开始,沿顺时针方向遇到的第一个服务器,便是当前对象将要缓存到的服务器

因为被缓存对象与服务器hash后的值是固定的,所以,在服务器不变的条件下,对象key必定会被缓存到固定的服务器上。根据上边的规则,下图中的映射关系:

  • key-1 -> node-1

  • key-3 -> node-2

  • key-4 -> node-2

  • key-5 -> node-2

  • key-2 -> node-0

如果想要访问某个key,只要使用相同的计算方式,即可得知这个key被缓存在哪个服务器上了。

一致性hash的优势

我们简单了解了一致性hash的原理,那它又是如何优化集群中添加节点和缩减节点,普通取模算法导致的缓存服务,大面积不可用的问题呢?

先来看看扩容的场景,假如业务量激增,系统需要进行扩容增加一台服务器node-4,刚好node-4被映射到node-1node-2之间,沿顺时针方向对象映射节点,发现原本缓存在node-2上的对象key-4key-5被重新映射到了node-4上,而整个扩容过程中受影响的只有node-4node-1节点之间的一小部分数据。

反之,假如node-1节点宕机,沿顺时针方向对象映射节点,缓存在node-1上的对象key-1被重新映射到了node-4上,此时受影响的数据只有node-0node-1之间的一小部分数据。

从上边的两种情况发现,当集群中服务器的数量发生改变时,一致性hash算只会影响少部分的数据,保证了缓存系统整体还可以对外提供服务的。

数据偏斜问题

前边为了便于理解原理,画图中的node节点都很理想化的相对均匀分布,但理想和实际的场景往往差别很大,就比如办了个健身年卡的我,只去过健身房两次,还只是洗了个澡。

想要健身的你

在服务器节点数量太少的情况下,很容易因为节点分布不均匀而造成数据倾斜问题,如下图被缓存的对象大部分缓存在node-4服务器上,导致其他节点资源浪费,系统压力大部分集中在node-4节点上,这样的集群是非常不健康的。

解决数据倾斜的办法也简单,我们就要想办法让节点映射到hash环上时,相对分布均匀一点。

一致性Hash算法引入了一个虚拟节点机制,即对每个服务器节点计算出多个hash值,它们都会映射到hash环上,映射到这些虚拟节点的对象key,最终会缓存在真实的节点上。

虚拟节点的hash计算通常可以采用,对应节点的IP地址加数字编号后缀 hash(10.24.23.227#1) 的方式,举个例子,node-1节点IP为10.24.23.227,正常计算node-1的hash值。

  • hash(10.24.23.227#1)% 2^32

假设我们给node-1设置三个虚拟节点,node-1#1node-1#2node-1#3,对它们进行hash后取模。

  • hash(10.24.23.227#1)% 2^32

  • hash(10.24.23.227#2)% 2^32

  • hash(10.24.23.227#3)% 2^32

下图加入虚拟节点后,原有节点在hash环上分布的就相对均匀了,其余节点压力得到了分摊。

但需要注意一点,分配的虚拟节点个数越多,映射在hash环上才会越趋于均匀,节点太少的话很难看出效果

引入虚拟节点的同时也增加了新的问题,要做虚拟节点和真实节点间的映射,对象key->虚拟节点->实际节点之间的转换。

一致性hash的应用场景

一致性hash在分布式系统中应该是实现负载均衡的首选算法,它的实现比较灵活,既可以在客户端实现,也可以在中间件上实现,比如日常使用较多的缓存中间件memcachedredis集群都有用到它。

memcached的集群比较特殊,严格来说它只能算是伪集群,因为它的服务器之间不能通信,请求的分发路由完全靠客户端来的计算出缓存对象应该落在哪个服务器上,而它的路由算法用的就是一致性hash。

还有redis集群中hash槽的概念,虽然实现不尽相同,但思想万变不离其宗,看完本篇的一致性hash,你再去理解redis槽位就轻松多了。

其它的应用场景还有很多:

  • RPC框架Dubbo用来选择服务提供者

  • 分布式关系数据库分库分表:数据与节点的映射关系

  • LVS负载均衡调度器

  • .....................

总结

简单的阐述了下一致性hash,如果有不对的地方大家可以留言指正,任何技术都不会十全十美,一致性Hash算法也是有一些潜在隐患的,如果Hash环上的节点数量非常庞大或者更新频繁时,检索性能会比较低下,而且整个分布式缓存需要一个路由服务来做负载均衡,一旦路由服务挂了,整个缓存也就不可用了,还要考虑做高可用。

不过话说回来,只要是能解决问题的都是好技术,有点副作用还是可以忍受的。

相关文章:

面试高频:一致性hash算法

这两天看到技术群里,有小伙伴在讨论一致性hash算法的问题,正愁没啥写的题目就来了,那就简单介绍下它的原理。下边我们以分布式缓存中经典场景举例,面试中也是经常提及的一些话题,看看什么是一致性hash算法以及它有那些…...

docker部署项目

docker部署项目 (加载tar包:docker image load -i mysql.tar) 一、jdk环境配置 1.jdk下载地址 --Java Archive | Oracle 中国 --选择好版本进入 --下载Linux x64 Compressed Archive的链接 2.解压 --创建文件夹:mkdir /ro…...

每天40分玩转Django:Django Celery

Django Celery 一、知识要点概览表 模块知识点掌握程度要求Celery基础配置、任务定义、任务执行深入理解异步任务任务状态、结果存储、错误处理熟练应用周期任务定时任务、Crontab、任务调度熟练应用监控管理Flower、任务监控、性能优化理解应用 二、基础配置实现 1. 安装和…...

df.groupby(pd.Grouper(level=1)).sum()

df.groupby(pd.Grouper(level1)).sum() 在 Python 中的作用是根据 DataFrame 的某一索引级别进行分组,并计算每个分组的总和。具体来说: df.groupby(...):这是 pandas 的分组操作,按照指定的规则将 DataFrame 分组。 pd.Grouper(…...

运动控制探针功能详细介绍(CODESYS+SV63N伺服)

汇川AM400PLC和禾川X3E伺服EtherCAT通信 汇川AM400PLC和禾川X3E伺服EtherCAT通信_汇川ethercat通信-CSDN博客文章浏览阅读1.2k次。本文详细介绍了如何使用汇川AM400PLC通过EtherCAT总线与禾川X3E伺服进行通信。包括XML硬件描述文件的下载与安装,EtherCAT总线的启用,从站添加…...

C语言基础18(GDB调试)

文章目录 GDBGDB概述什么是GDB**GDB**的主要功能 GDB的启动GDB常见的启动方式 GDB的退出GDB的常用命令GDB查看源代码指令———list(1)**GDB** 查看设置**------info****GDB** 查看内存**GDB** 设置断点**---break (b)****GDB** 设置观察点**---watch****GDB** 程序调试 GDB完整…...

《向量数据库指南》——应对ElasticSearch挑战,拥抱Mlivus Cloud的新时代

在当今数据驱动的商业环境中,向量数据库的应用正变得愈加重要。随着人工智能和机器学习的快速发展,尤其是在自然语言处理、图像识别及推荐系统等领域,向量数据库以其强大的存储和检索能力,迎来了广泛的应用机会。然而,在实际应用中,企业在选择和实施向量数据库方案时,常…...

c++的stl库中stack的解析和模拟实现

目录 1.stack的介绍和使用 1.1stack的介绍 1.2stack的使用 2.stack的模拟实现 1.stack的介绍和使用 1.1stack的介绍 1. stack 是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。 2. stac…...

C语言——字符函数和内存函数

目录 前言 字符函数 1strlen 模拟实现 2strcpy 模拟实现 3strcat 模拟实现 4strcmp 模拟实现 5strncpy 模拟实现 6strncat 模拟实现 7strncmp 模拟实现 8strstr 模拟实现 9strtok 10strerror 11大小写字符转换函数 内存函数 1memcpy 模拟实现 2…...

查询docker overlay2文件夹下的 c7ffc13c49xxx是哪一个容器使用的

问题背景 查询docker overlay2文件夹下的 c7ffc13c49xxx是哪一个容器使用的 [root@lnops overlay2]# du -sh * | grep G 1.7G 30046eca3e838e43d16d9febc63cc8f8bb3d327b4c9839ca791b3ddfa845e12e 435G c7ffc13c49a43f08ef9e234c6ef9fc5a3692deda3c5d42149d0070e9d8124f71 1.…...

Golang的容器编排实践

Golang的容器编排实践 一、Golang中的容器编排概述 作为一种高效的编程语言,其在容器编排领域也有着广泛的运用。容器编排是指利用自动化工具对容器化的应用进行部署、管理和扩展的过程,典型的容器编排工具包括Docker Swarm、Kubernetes等。在Golang中&a…...

【51项目】51单片机自制小霸王游戏机

视频演示效果: 纳新作品——小霸王游戏机 目录: 目录 视频演示效果: 目录: 前言:...

ArkTs之NAPI学习

1.Node-api组成架构 为了应对日常开发经的网络通信、串口访问、多媒体解码、传感器数据收集等模块,这些模块大多数是使用c接口实现的,arkts侧如果想使用这些能力,就需要使用node-api这样一套接口去桥接c代码。Node-api整体的架构图如下&…...

【数据库初阶】MySQL中表的约束(上)

🎉博主首页: 有趣的中国人 🎉专栏首页: 数据库初阶 🎉其它专栏: C初阶 | C进阶 | 初阶数据结构 亲爱的小伙伴们,大家好!在这篇文章中,我们将深入浅出地为大家讲解 MySQL…...

173. 矩阵距离 acwing -多路BFS

原题链接:173. 矩阵距离 - AcWing题库 给定一个 N行 M 列的 01矩阵 A,A[i][j] 与 A[k][l]]之间的曼哈顿距离定义为: dist(i,j,k,l)|i−k||j−l|| 输出一个 N 行 M 列的整数矩阵 B,其中: B[i][j]min1≤x≤N,1≤y≤M,A…...

Linux下部署Redis集群 - 一主二从三哨兵模式

三台服务器redis一主二从三哨兵模式搭建 最近使用到了redis集群部署,使用一主二从三哨兵集群部署redis,将自己部署的过程中的使用心得分享给大家,希望大家以后部署的过程减少一些坑。 服务器准备 3台服务器 ,确定主redis和从red…...

实战设计模式之建造者模式

概述 在实际项目中,我们有时会遇到需要创建复杂对象的情况。这些对象可能包含多个组件或属性,而且每个组件都有自己的配置选项。如果直接使用构造函数或前面介绍的工厂方法来创建这样的对象,可能会导致以下两个严重问题。 1、参数过多。当一个…...

活动预告 | Microsoft Azure 在线技术公开课:使用 Azure OpenAI 服务构建生成式应用

课程介绍 通过 Microsoft Learn 免费参加 Microsoft Azure 在线技术公开课,掌握创造新机遇所需的技能,加快对 Microsoft Cloud 技术的了解。参加我们举办的“使用 Azure OpenAI 服务构建生成式应用”活动,了解如何使用包括 GPT 在内的强大的…...

ubuntu安装firefox

firefox下载地址:https://ftp.mozilla.org/pub/firefox/releases/ 卸载 sudo apt-get update dpkg --get-selections |grep firefox apt-get purge firefox 解压 tar -xjf firefox*.tar.bz2复制文件 sudo mv firefox/ /opt/firefox30sudo mv /usr/bin/firefox /…...

计算机网络原理(谢希仁第八版)第4章课后习题答案

第四章 网络层 详细计算机网络(谢希仁-第八版)第四章习题全解_计算机网络第八版谢希仁课后答案-CSDN博客 1.网络层向上提供的服务有哪两种?是比较其优缺点。网络层向运输层提供 “面向连接”虚电路(Virtual Circuit)服…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

基于 TAPD 进行项目管理

起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...